
PRACTICE-ORIENTED PRIVACY IN CRYPTOGRAPHY

by
Alishah Chator

A dissertation submitted to The Johns Hopkins University in conformity
with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland
March, 2023

© 2023 Alishah Chator
All rights reserved

Abstract

While formal cryptographic schemes can provide strong privacy guarantees, heuristic

schemes that prioritize efficiency over formal rigor are often deployed in practice, which

can result in privacy loss. Academic schemes that do receive rigorous attention often

lack concrete efficiency or are difficult to implement. This creates tension between

practice and research, leading to deployed privacy-preserving systems that are not

backed by strong cryptographic guarantees.

To address this tension between practice and research, we propose a practice-

oriented privacy approach, which focuses on designing systems with formal privacy

models that can effectively map to real-world use cases. This approach includes

analyzing existing privacy-preserving systems to measure their privacy guarantees and

how they are used. Furthermore, it explores solutions in the literature and analyzes

gaps in their models to design augmented systems that apply more clearly to practice.

We focus on two settings of privacy-preserving payments and communications.

First, we introduce BlockSci, a software platform that can be used to perform analyses

on the privacy and usage of blockchains. Specifically, we assess the privacy of the

Dash cryptocurrency and analyze the velocity of cryptocurrencies, finding that Dash’s

PrivateSend may still be vulnerable to clustering attacks and that a significant fraction

of transactions on Bitcoin are “self-churn” transactions.

Next, we build a technique for reducing bandwidth in mixing cryptocurrencies,

which suffer from a practical limitation: the size of the transaction growing linearly

ii

with the size of the anonymity set. Our proposed technique efficiently samples cover

traffic from a finite and public set of known values, while deriving a compact description

of the resulting transaction set. We show how this technique can be integrated with

various currencies and different cover sampling distributions.

Finally, we look at the problem of establishing secure communication channels

without access to a trusted public key infrastructure. We construct a scheme that

uses network latency and reverse Turing tests to detect the presence of eavesdroppers,

prove our construction secure, and implement it on top of an existing communication

protocol.

This line of work bridges the gap between theoretical cryptographic research and

real-world deployments to bring better privacy-preserving schemes to end users.

Thesis Readers

Dr. Matthew Green (Primary Advisor)
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Abhishek Jain
Associate Professor
Department of Computer Science
Johns Hopkins University

Dr. Yinzhi Cao
Assistant Professor
Department of Computer Science
Johns Hopkins University

iii

Dedicated to my Mom, Dad, and Areeb.

iv

Acknowledgements

My long, transformative journey as a graduate student was only possible thanks to

many, many people. First, I want to thank my advisor Matthew Green. I can’t think of

a better mentor than Matt for learning how to be a researcher, a teacher, and a privacy

advocate. I am so grateful to him for his support, guidance, and encouragement for me

to find my own path as a researcher. My fondest memories of my PhD are standing in

front of a whiteboard with Matt and discussing everything from research ideas to sci-fi

novels. He is truly an inspiration of what an academic can be, with his deep insight

into theory, practice, and pretty much anything privacy or technology related. Being

his student was an incredible experience, and I hope to continue having opportunities

to learn from him.

Next, I would like to thank Abhishek Jain. Abhishek really opened my eyes to the

possibilities of cryptography and I learn something every time I speak with him. His

systematic and enthusiastic approach to understanding a cryptographic construction

really changed the way I read and absorb new research. The range of problems that

Abhishek works on is truly remarkable and he always has valuable insight whenever I

come to him with a research question.

I would like to thank Yinzhi Cao for really growing the scope of our security and

privacy group at Hopkins, and for agreeing to serve on my thesis committee.

I want to thank Susan Hohenberger for mentorship as well. Working with Susan

really helped me find my confidence and grounding as a researcher. Her guidance on

v

formalism and devising research problems was invaluable.

I was fortunate to be hosted for a summer by Arvind Narayanan at Princeton.

Working with Arvind, I was able to gain a deeper understanding of privacy research

beyond cryptography. Arvind’s understanding of technology’s impact on society is

incredible and I am grateful to him for giving me the opportunity to work with him.

I also got the opportunity to work with Nick Sullivan and the Cryptography

Research team at Cloudflare. I never imagined getting an internship through a Twitter

DM, but I am so thankful to have gotten the chance to see what industry research,

protocol standardization, and deploying privacy systems at scale looks like.

When COVID-19 hit and my summer research plans fell through, Nadia Heninger

at UCSD kindly agreed to let me work with her remotely. I am so grateful for both

the mentorship during a difficult time and the opportunity to learn more about the

area of cryptanalysis.

When I was feeling lost and not sure if privacy research could make a real difference,

Seny Kamara provided me with invaluable guidance on how to be an academic without

losing touch with the communities we are trying to build better systems for. I am

grateful to him, Lucy, Leah, and the rest of the Community-Driven Crypto seminar

members for rekindling my passion for research.

I am thankful to Alex Halderman, Zakir Durumeric, and David Adrian for getting

me started on my research journey back at Michigan.

I would like to thank all of my incredible collaborators: Steven Goldfeder, Matthew

Green, Mathias Hall-Andersen, Harry Kalodner, Kevin Lee, Malte Möser, Arvind

Narayanan, Martin Plattner, Nick Sullivan, and David Wong.

I am also grateful to have been surrounded by some wonderful labmates - Arka,

Aarushi, Gabe, Dave, Christina, Ian, Gijs, Nils, Zhengzhong, Gabby, Tushar, Max,

Pratyush, Harry, Aditya, Logan, David, and Atheer. I am especially lucky to have

vi

started my program at the same time as Aarushi and Arka. Over the years, we have

had so many conversations ranging from deeply technical to chaotically absurd. Both

of their support through the years has been immeasurable and our friendship is very

dear to me. Our lab overall has been such a collaborative and welcoming place and I

am thankful to everyone that made it that way.

Within the CS department, I am also grateful to all the friends I met at happy

hours, while making coffee, and when just looking for a distraction from work -

Yasamin, Aditya, Ama, Jaron, Ravi, Enayat, and Rohit to name a few. I would like

to thank the Baltimore Ismaili community, and Saleema and Anita in particular, for

helping me get settled and feeling at home here. Baltimore is a delightful city and I

am glad I got to spend these years here.

I also have so many friends and family whose unconditional support has allowed

me to keep pushing forward, thank you and I love you all deeply. A special thanks

goes to Kinari, Abhi, Deepak, and Sidu. Kinari for being such a wonderful roommate

and basically my sister, I can’t imagine how I would have gotten through grad school

without you. Abhi, Deepak, and Sidu were also major sources of encouragement,

especially during some of my lowest lows in grad school. I am also grateful to QPL

and all my Zoom coworking and game playing friends for making the pandemic feel

much less isolating.

I also want to thank Prateek, who left us far too soon, but without whose help I

would not know the first thing about grad school. You will alway be in my thoughts.

Finally, I must thank my mom, dad, Areeb, and Nia. My mom and dad always

supported me and enabled me to find my own path. Without their love and sacrifices

I would not be here. Areeb has always been an incredibly supportive older brother

and my first and greatest inspiration. Our beagle, Nia, joined our family during the

pandemic and I thank her for being adorable.

vii

Contents

Abstract . ii

Dedication . iv

Acknowledgements . v

Contents . viii

List of Tables . xiii

List of Figures . xiv

Chapter 1 Introduction . 1

1.1 Design and applications of a blockchain analysis platform 5

1.1.1 Our Contributions . 7

1.2 Reducing Bandwidth in Mixing Cryptocurrencies 9

1.2.1 Our Contributions . 11

1.3 Detecting Man-in-the-Middle via Network Latency and Reverse Turing

Tests . 12

1.3.1 Our Contributions . 16

1.3.2 Limitations . 17

1.4 Bibliographic Notes . 18

viii

1.5 Outline of the Thesis . 18

Chapter 2 Background . 19

2.1 Cryptographic Preliminaries . 19

2.1.1 Diffie-Hellman Contributory Key Exchange 19

2.1.2 Pseudo-Random Function . 20

2.1.3 Authenticated Encryption with Associated Data 21

2.1.4 Collision-Resistant Hash Functions 22

2.1.5 Ring Signatures . 22

2.2 Blockchains . 23

2.2.1 Bitcoin-like Blockchains . 24

2.2.2 Monero . 25

Chapter 3 Design and applications of a blockchain analysis platform 26

3.1 Design and architecture . 26

3.1.1 Recording and importing data 26

3.1.2 BlockSci Data . 28

3.1.3 Address Linking . 32

3.1.4 Programmer interface . 33

3.2 Applications . 35

3.2.1 Cluster intersection attack on Dash 35

3.2.2 Improved estimates of the velocity of cryptocurrencies 41

3.2.3 Other applications of BlockSci 43

3.3 Conclusion . 44

Chapter 4 Reducing Bandwidth in Mixing Cryptocurrencies 45

ix

4.1 Intuition . 45

4.1.1 Outline of this work . 47

4.2 Preliminaries . 47

4.2.1 Notation . 47

4.2.2 Transaction sets . 47

4.2.3 Transaction ledger . 48

4.2.4 Keyed hash functions with integer domain and range 48

4.3 Definitions . 48

4.4 A Uniform Sampling Technique . 51

4.4.1 Security . 52

4.5 Duplicates and Alternative Distributions 55

4.5.1 Duplicates . 55

4.5.1.1 Expected number of unique transactions 55

4.5.1.2 Resampling . 56

4.5.1.3 Oversampling . 56

4.5.2 Alternative Distributions . 57

4.6 Integration with Specific Cryptocurrency Protocols 58

4.6.1 Overview of Protocols . 59

4.6.2 Simulation Results . 60

4.7 Other Applications . 63

4.8 Related Work . 64

4.8.1 Anonymity for cryptocurrencies 64

4.8.2 Improved WI and ZK proof techniques 64

4.8.3 Programmable hash functions 64

x

4.9 Conclusion . 65

Chapter 5 Detecting Man-in-the-Middle via Network Latency and

Reverse Turing Tests . 66

5.1 Technical Overview . 66

5.2 Definitions . 72

5.2.1 The Turing Test . 72

5.2.1.1 Formal Definition . 73

5.2.2 HASC Protocols . 74

5.2.2.1 Overview . 74

5.2.2.2 Execution Environment 76

5.2.2.2.1 Pre-accept Phase 76

5.2.2.2.2 Auth phase 78

5.2.2.2.3 Post-accept phase 79

5.2.2.3 Security Defintion 81

5.2.2.4 Relation to ACCE security definition 83

5.3 LATENT Protocol . 84

5.3.1 Network Model . 84

5.3.2 Design . 84

5.3.3 Overview . 86

5.3.4 Building Blocks . 87

5.3.5 Construction . 88

5.3.6 Illustrated Protocol Flow . 92

5.3.7 Potential Extensions . 93

5.4 Proving LATENT is a Secure HASC protocol 93

xi

5.4.1 Full Proof of Security . 96

5.5 Experimental Results . 104

5.5.1 Implementation . 104

5.5.2 Experimental Setup . 105

5.5.3 Results and Analysis . 106

5.5.4 TURN server analysis . 110

5.6 Related Work . 112

5.6.1 Other Forced Latency Variants 112

5.6.2 Distance Bounding . 112

5.6.3 Captchas and Human-Based Cryptography 112

5.7 Conclusion . 113

Bibliography . 114

xii

List of Tables

4-I Anonymity Costs of each encoding approach for large N 61

xiii

List of Figures

Figure 3-1 Overview of BlockSci’s architecture. 27

Figure 3-2 Transaction structure . 29

Figure 3-3 Distribution of address cluster sizes in Bitcoin 33

Figure 3-4 Overview of Dash privacy . 35

Figure 3-5 PrivateSend wallet simulation 36

Figure 3-6 Cluster intersection attack on Dash 38

Figure 3-7 Distribution of the number of inputs of Dash PrivateSend . . 39

Figure 3-8 Two estimates of the velocity of bitcoins. 41

Figure 4-1 The RSS uniform sampling and recovery algorithms 51

Figure 4-2 Monero sampling technique 57

Figure 4-3 Size of the transaction list T in bits for two popular cryptocur-

rencies . 62

Figure 5-1 Illustration of basic forced latency protocol 68

Figure 5-2 Illustration of forced latency protocol with (passive) MitM

present . 68

Figure 5-3 Encrypt and Decrypt oracles in the HASC security experiment 80

Figure 5-4 Methods for sending and receiving packets 90

Figure 5-5 Illustration of how LATENT authenticates packets 94

xiv

Figure 5-6 Comparison of latency distributions when MitM is present and

absent . 107

Figure 5-7 Average accuracy of MitM detection over the course of a video

call . 108

Figure 5-8 Visualization of the impact of LATENT on a call 108

Figure 5-9 Latency and Jitter (measured in ms) for TURN servers located

in different regions) . 109

xv

Chapter 1

Introduction

One of the central goals of cryptography is providing privacy. As with many crypto-

graphic properties, the definition of privacy varies, but generally refers to the goal of

hiding some information that the user deems secret. This information ranges from the

content of a message, to the identity of the sender, or even to a specific input to a

protocol. As the nature of what needs to be hidden changes from situation to situation,

the result is that custom specific solutions are common in this space. Without general

approaches, both protocol designers and deployers have a great deal of leeway in

shaping these systems. While flexibility can have its advantages, in security it can

also lead to a lack of consistency and compatibility.

For example, deployers of protocols will often be concerned with concrete efficien-

cies of schemes rather than the formal rigor of the security properties as efficiency

is what impacts the experience of an end user most tangibly on a day to day basis.

Thus, heuristic schemes are often deployed instead of schemes with provable security

guarantees. Heuristic schemes are those that rely on intuitive notions of what consti-

tutes privacy and can be quite fast, but it is difficult to analyze the exact privacy loss

that results. A common deployed example of these are mix networks [23]. There are

many cases of extracting patterns that break the privacy of heuristics in settings such

as anonymous routing [47], encrypted communications [31], and electronic cash [63].

1

On the other hand, schemes that do receive rigorous academic attention have their

own challenges. These works do add formalism, however emphasis tends to be on

constructing schemes in new models and having asymptotic gains. While these focuses

will result in undoubtedly better cryptographic protocols, they can often have poor

concrete efficiency or are difficult to implement. Furthermore, there is a tendency for

“folklore” solutions to arise, where implementation details are treated as trivial, but

lack of deployment means that the viability of these approaches are not vetted.

This tension between practice and research is undesirable as it means that the

deployed privacy-preserving systems end users have available to them are often not

backed by the strong guarantees that cryptographic research is centered around.

This can expose users to serious privacy loss as mentioned above. One approach to

handle this issue is continued work in improving the concrete efficiencies of theoretical

constructions so that they are viable in real world systems. However, a parallel

concern is that even if an academic scheme is concretely efficient, there may be enough

discrepancy in its model and the real world that implementers have challenges adapting

the protocol to their applications. These are not simply engineering problems, but

core structural questions that impact the security achieved. In this thesis, we focus

on an approach we refer to as practice-oriented privacy as a means to alleviate this

latter concern.

We take inspiration from the approach favored by practice-oriented provable-

security (POPS) [1]. POPS focuses on making it easier to apply provable secure

cryptographic constructions in practice by adding more details about concrete effi-

ciencies and how to rely on the security of underlying primitives. In contrast, we

focus more on looking at how to design systems with formal models of privacy that

effectively map to real world use cases. We approach this from two directions. We

analyze existing privacy-preserving systems to measure both their privacy guarantees

as well as how they are used. We then look at solutions to these problems in the

2

literature and see if we can find non-trivial “gaps” in their models and explore ways

to build an augmented system that more clearly applies to practice.

In particular, we focus on the settings of privacy-preserving payments and commu-

nication:

Design and applications of a blockchain analysis platform. Blockchains

and cryptocurrencies have been a dramatic new development in the space

of privacy-preserving payments. Different cryptocurrencies advertise varying

amounts of anonymity as well as other functionalities; however, formal guarantees

of these properties are uncommon. The public nature of the transaction graph

on most blockchains offers an opportunity to systematically measure how these

systems are being used. In the first part of this dissertation, we introduce

BlockSci, a blockchain analysis platform. We show how the similar design

of many blockchains allow for the construction of an analysis tool flexible

enough to support multiple blockchains while still able to benefit from various

optimizations. We then show how our tool can be used to perform analyses

on the privacy and usage of these blockchains. In particular, we look at the

privacy of the Dash cryptocurrency and provide an improved assessment of the

velocity of cryptocurrencies. Our first analysis indicates that Dash’s PrivateSend

may still be vulnerable to clustering attacks that have been applied to other

cryptocurrencies. Our second analysis indicates that a significant fraction of

transactions on Bitcoin are “self-churn,” transactions where the sender and

receiver are the same party.

Reducing Bandwidth in Mixing Cryptocurrencies. The next part of the

dissertation continues to take a look at the privacy-preserving payments setting,

looking at Mixing Cryptocurrencies in particular. These are schemes which

use cryptographic techniques to correlate the real input into a transaction with

3

many other “cover” inputs to hide who is actually performing the payment.

Unfortunately, many of these schemes suffer from a practical limitation: the

size of the transaction grows linearly with the size of the anonymity set. We

propose a simple technique for efficiently sampling cover traffic from a finite

(and public) set of known values, while deriving a compact description of the

resulting transaction set. This technique, which is based on programmable hash

functions, allows us to dramatically reduce transaction bandwidth when large

cover sets are used. We refer to our construction as a recoverable sampling

scheme. We present formal security definitions; prove our constructions secure;

and show how these constructions can be integrated with various currencies and

different cover sampling distributions.

Detecting Man-in-the-Middle via Network Latency and Reverse Tur-

ing Tests. The last part of this dissertation focuses on the setting of privacy-

preserving communications. We investigate the problem of establishing secure

communication channels in the challenging environment where participants

do not share secrets or have access to trustworthy public-key distribution. In

this setting, which includes many secure messaging and telephony protocols,

participants cannot rule out the presence of a man-in-the-middle attacker with-

out complex out-of-band checks. In practice, these checks rely on informal

assumptions of the difficulty for an adversary to interfere with the check. In

this work, we build on techniques originally proposed by Chaum [22] and Rivest

and Shamir [81] to secure these communications using human authentication.

Specifically, we develop and analyze key exchange and communication protocols

that enable human participants to detect the presence of an attacker, by forcing

the attacker to actively modify the contents of the (human-recognizable) com-

munications that take place on the channel. We note the existing techniques

from the literature do not specify what this detection process looks like and how

4

it ties into the system’s security. We formalize and extend these techniques to

a practical real-time setting, implementing our protocol on top of WebRTC, a

real-time communication standard used in practice, providing a detailed security

model for our proposal, and proving our protocols secure in this model.

We now delve into these problems in more detail.

1.1 Design and applications of a blockchain analy-
sis platform

Public blockchains constitute an unprecedented research corpus of financial trans-

actions. Bitcoin’s blockchain alone is 260 GB as of December 2019.1 This data

holds the key to measuring the privacy of cryptocurrencies in practice, studying user

behavior with regards to security and economics, or understanding the non-currency

applications that use the blockchain as a database.

We present BlockSci, a software platform that enables the science of blockchains. It

addresses three pain points of existing tools: poor performance, limited capabilities, and

a cumbersome programming interface. Compared to the use of general-purpose graph

databases, BlockSci is hundreds of times faster for sequential queries and substantially

faster for all queries, including graph traversal queries. It comes bundled with analytic

modules such as address clustering, exposes different blockchains through a common

interface, collects “mempool” state and imports exchange rate data, and gives the

programmer a choice of interfaces: a Jupyter notebook for intuitive exploration

and C++ for performance-critical tasks. In contrast to commercial tools, BlockSci

is not tailored to specific use cases such as criminal investigations or insights for

cryptocurrency traders. Instead, by providing efficient and convenient programmatic

access to the full blockchain data, it enables a wide range of reproducible, scientific
1All numbers in this paper are current as of December 2019, and analyses of the Bitcoin blockchain

as of block height 610,695, unless stated otherwise.

5

analyses.

BlockSci’s design starts with the observation that blockchains are append-only

databases; further, the snapshots used for research are static. Thus, the ACID

properties of transactional databases are unnecessary. This makes an in-memory

analytical database the natural choice. On top of the obvious speed gains of memory,

we apply a number of tricks such as converting hash pointers to actual pointers and

deduplicating address data, which further greatly increase speed and decrease the

size of the data. We plan to scale vertically as blockchains grow, and we expect that

this will be straightforward for the foreseeable future, as commodity cloud instances

currently offer up to a hundred times more memory than required for loading and

analyzing Bitcoin’s blockchain. Avoiding distributed processing is further motivated by

the fact that blockchain data is graph-structured, and thus hard to partition effectively.

In fact, we conjecture that the use of a traditional, distributed transactional database

for blockchain analysis has infinite COST (Configuration that Outperforms a Single

Thread) [62], in the sense that no level of parallelism can outperform an optimized

single-threaded implementation.

BlockSci comes with batteries included. First, it is not limited to Bitcoin: a parsing

step converts a variety of blockchains into a common, compact format. Currently

supported blockchains include Bitcoin, Bitcoin Cash, Bitcoin SV, Litecoin, and Zcash.

A multi-chain mode optimizes for user-friendly and memory-efficient analyses of forked

blockchains together with their parent chain. Smart contract platforms such as

Ethereum are outside our scope.

Second, BlockSci includes a library of useful analytic tools, such as identifying

special transactions (e.g., CoinJoin) and linking addresses to each other based on

well-known heuristics, including across forked chains. Third, BlockSci can record the

time of transaction broadcasts on the peer-to-peer network and expose them through

the same interface. Similarly, we make (historical and current) data on the exchange

6

rates between cryptocurrencies and fiat currencies readily available. These allow many

types of analyses that wouldn’t be possible with blockchain data alone.

The analyst begins exploring the blockchain through a Jupyter notebook interface,

which initially exposes a chain object, representing the entire blockchain. Startup

is instantaneous because transaction objects are not initially instantiated, but only

when accessed. Iterating over blocks and transactions is straightforward, as illustrated

by the following query, which computes the average fee paid by transactions in each

block mined in December 2019:
fees = [mean(tx.fee for tx in block) for block in chain.range(’Dec 2019’)]

This interface is suitable for exploration, but for analyses requiring high perfor-

mance, BlockSci also has a C++ interface. For many tasks, most of the code can be

written in Python using a “fluent interface”, an API design pattern that combines

expressiveness and high performance.

We present various applications to illustrate the capabilities of BlockSci. In partic-

ular, we provide evidence that the cluster intersection attack reported recently [34]

also works against Dash, a prominent privacy-focused altcoin with built-in mixing.

Additionally, we provide improved estimates of the velocity of cryptocurrencies, i.e.,

the frequency with which coins change possession. This helps us understand their use

as a store of value versus a medium of exchange.

1.1.1 Our Contributions

More concretely, in this thesis we focus on the following contributions:

Enabling the analysis of multiple blockchains. While Bitcoin and other

blockchains provide a large quantity of public data, existing tools are either

limited in scope, hard to use, or inefficient. In optimizing BlockSci for blockchain

analysis, we found ways to take advantage of shared invariants among many

7

blockchains. This means that these different blockchains can be parsed into

our system, benefit from the same optimizations, and have the same interface

exposed to analysts. Thus, queries can be quickly and seamlessly applied to

several blockchains. This allows for not only deeper analyses of the various

blockchains in the ecosystem, but also more focused comparisons between these

blockchains as well.

An analysis of Dash PrivateSend. One prominent privacy-focused cryptocur-

rency we analyze is Dash. It shares many similar design elements as Bitcoin,

with some deviations in aspects like the PoW algorithm used. One significant

difference is the distinction of certain nodes as Masternodes. These are full

nodes which maintain a significant stake in the currency and participate in

the consensus algorithm and facilitate special kinds of transactions. One of

these transaction types is PrivateSend, Dash’s anonymous payment functionality.

Here, a series of Masternodes operate as "mixes," taking in inputs from multiple

parties and creating a multiple input and multiple output transaction which

obscures the linkage of each parties input to transaction output. Despite this,

we were able to use BlockSci to successfully implement the cluster intersection

attack which has been able to trace payments on other blockchains. Critically, we

found that the attack has a high success probability on the default PrivateSend

parameters at the time. This indicates PrivateSend is likely providing much less

privacy than assumed.

Improved estimates of the velocity of cryptocurrencies. Crucial to under-

standing the privacy affording by blockchains and cryptocurrencies is under-

standing how they are being used. Many assumptions of the security and privacy

of cryptocurrencies follow from the assumption that they are being used as

currencies. For instance, a technique for achieving anonymous payments on the

8

platform may make assumptions about the regularity of transactions and the

uniformity of different types of transactions. If these assumptions are wrong,

then these techniques will stand out and be easy to detect. Thus, it is important

to analyze the velocity of cryptocurrencies. If transactions where value moves

between two different parties is rare, it will be difficult to hide such payments

in the network. We use BlockSci to carry out this analysis by measuring the

amount of "self-churn," or transactions where the sender and receiver are the

same. We find that the velocity of cryptocurrencies like Bitcoin are much lower

and more stable than naively computing the total transaction output per day

would indicate.

1.2 Reducing Bandwidth in Mixing Cryptocurren-
cies

Cryptocurrencies such as Bitcoin suffer from well-known privacy limitations. These

stem from the fact that each transaction on the currency’s public ledger is explicitly

linked to one or more preceding transaction outputs from which funds originate. A

number of academic works [5, 50, 63, 67, 84] and for-profit companies [19, 28] have

demonstrated that sensitive payment information can be extracted from the resulting

public transaction graph.

Several recent currencies address this problem by directly incorporating crypto-

graphic mixing into the consensus protocol. The underlying protocols, which include

Zerocash [86], CryptoNote [85], Zerocoin [64] and RingCT [70] obscure the identity

of the previous transaction output(s) being consumed—henceforth referred to in

this paper as the real outputs—by hiding them within a larger set of cover outputs,

which are other transactions on the ledger that are not being spent in this trans-

action. This practice hides the origin of funds by hiding the real outputs within

a larger anonymity set [76]. In practice this technique is frequently realized using

9

non-interactive witness-indistinguishable (WI)2 or zero knowledge (ZK) proofs, such

as zkSNARKs [72]. Regardless of the exact technology employed for the proof system,

transactions in these systems can be viewed as making the following statement:

This transaction references M “real” previous transaction outputs (I1, . . . IM)

embedded within a public “transaction output list” T of previous outputs

drawn from the ledger.

While the protocols above use different techniques, for the purposes of this paper

we will consider only two aspects: (1) the size of the list T for each transaction (which

we denote by |T |), and (2) the size of the resulting transaction as a function of |T |.

The former directly affects the privacy provided by the protocol: larger values of |T |

may permit a larger anonymity set for each transaction. At the same time, limited

space on the ledger can make larger transactions unworkable.

Protocols such as Zerocash and Zerocoin [64, 86] set T to be the set of of all previous

outputs, using cryptographic accumulators and succinct proofs. This maximizes |T |

and minimizes transaction size, though at the cost of using strong cryptographic

assumptions. By contrast, “mixing” protocols such as CryptoNote and RingCT (used

by Monero [67]) use a smaller cover set. In these protocols, the spender randomly

samples a cover set for each transaction and transmits the description of T as part of

the transaction data. The need to encode a new subset T within each transaction

creates tension between the size of the anonymity set and the transaction size.

In this work, we focus exclusively on currencies that follow the mixing approach.

Specifically, we address the following problem: using current approaches, the transac-

tion bandwidth needed to describe T grows as O(|T |). While this is acceptable for

small cover sets, it makes these protocols unworkable with larger amounts of cover

traffic.3 This is problematic, given that there is impetus within the development
2These WI proofs are often used as part of a larger primitive, such as a ring signature [82].
3In practice this set is generally encoded using |T | differentially-encoded transaction indices.

10

community to greatly increase the amount of cover traffic used in currencies such as

Monero — to values as large as |T | = 100, 000 [13] — by incorporating asymptotically

more efficient proof systems where the proof size is constant or logarithmic in |T | [14,

94, 100]. As this work is deployed, the description of T will increasingly dominate as

the source of transaction bandwidth, and may become the effective limit on the size

of the anonymity set.

1.2.1 Our Contributions

In this work we describe an alternative approach to sampling the transaction output

list T such that the resulting description of T is compact. Our approach is relatively

simple, although the details and security proofs require considerable attention. Rather

than sampling T using the current approach, we propose to sample and encode this set

using a programmable keyed hash function (see e.g., [41, 42]) with a relatively short

key K. We show that using this approach, the description of T can be structured

so that it grows with the number of real transaction outputs (M), rather than with

the number of total elements in the list (N). For large cover sets, our approach

should represent a significant improvement in space efficiency over the naïve approach

currently used by real currency systems [15, 67].

Of course, this approach cannot be achieved using any hash function. In this

work we show how to construct such a function, as part of a protocol that we call a

recoverable sampling scheme. We provide security definitions and security proofs for

our constructions in the random oracle model.

We discuss our approach in two settings. First, we consider an approach that

samples the cover traffic uniformly from the set of all previous transaction outputs,

which closely matches the approach used by CryptoNote (as implemented in the

ByteCoin currency) [15, 85]. We then move to a more complex (and realistic) setting
Accumulator-based currencies work around this issue, since the set T can be represented by a single
value indicating the current transaction’s position in the ledger.

11

where T is sampled according to a specific and non-uniform distribution. Finally, we

discuss concrete scheme parameters and give bandwidth cost estimates for integrating

our approach into various deployed currencies, including ByteCoin [15] and Monero [67].

As a final matter, we describe applications of our technique to other application areas,

including anonymous communications and Client-Server Puzzles [49].

1.3 Detecting Man-in-the-Middle via Network La-
tency and Reverse Turing Tests

The global SARS-CoV-2 pandemic has re-emphasized the importance of secure and

highly-available video communications. In April 2020 researchers announced that the

encryption keys for Zoom calls were generated by centralized servers, and discovered

that certain Zoom calls between US participants were routed via servers in Beijing [59].

Concerns over the security of video calls produced an uproar in the United States and

Europe [108, 109], and resulted in a rapid multi-company effort to roll out end-to-end

encrypted (E2EE) video calling in products such as Zoom and Microsoft Teams [32,

107].

Deploying end-to-end encryption in video conferencing system requires designers

to grapple with several technical challenges. Chief among these is the need to

securely agree on shared encryption keys, in an environment where all centralized

infrastructure may be under adversarial control. This threat model is challenging due

to the fact that customers may not be able to trust centralized identity management,

and can potentially be vulnerable to MitM attacks by centralized key servers. The

designers of Zoom’s End-to-End encryption protocol [6] acknowledge this, and propose

various transparency, SSO and “key fingerprint” mechanisms as defense against such

misbehavior.

Despite these efforts, defenses against MitM attacks in current-generation E2EE

video calling largely devolve to provider trust, or (in systems such as Zoom’s) to an

12

awkward procedure that involves comparing a security code verbally or through an

out-of-band channel. Such mechanisms, seem highly unscalable. In this work we

consider an alternative approach to solving this problem.

The challenge of preventing MitM attacks. The notion of public-key key agree-

ment was first proposed by Diffie and Hellman more than 40 years ago [24], and forms

the basis of a vast number of secure communication protocols. In the intervening

decades, much subsequent work in this area has focused on authenticated key agreement

(AKE) [2, 53, 54], in which one or both parties cryptographically verify their identity

using a private key or shared secret. It is well known that some form of authentication

is critical to prevent active attacks on key agreement protocols.

While standard AKE protocols are ideal for establishing secure channels, such

protocols are not viable in all real-world settings. In many common applications

the parties cannot exchange a shared secret or public key in a secure fashion. For

example, Zoom and Teams users rely on centralized infrastructure to authenticate

other parties, set up the communications, and to forward all sent packets to the correct

party. Because users do not currently have public key certificates provided by an

external party, they are completely reliant on the provider behaving honestly for the

key exchange to not be corrupted.

As an alternative to trusting the channel, an alternative approach is to first

perform an unauthenticated key exchange to establish a shared secret, and only

later authenticate the channel to rule out the possibility that an active attack may

have occurred during the key exchange. This approach is used in Zoom end-to-end

encryption, as well as other messaging and video systems including OTR messaging [11],

Signal [91], and ZRTP telephony [16].

This later authentication may involve comparing key fingerprints via an out-of-

band channel, or performing an in-band comparison of a Short Authentication String

13

(SAS) using the human voice [96]. Because the authentication may occur after the key

agreement has completed, we refer to such protocols as a posteriori authenticated key

agreement protocols. Here, the objective is not preventing an active attack outright,

but rather using the guaranteed detection of an attack occurring to dissuade an

adversary.

While a posteriori authenticated key agreement has proven popular in practical

applications, the existing techniques have several limitations. In some cases, the

parties may not possess a secure secondary channel to compare key fingerprints. Some

research has demonstrated that Short Authentication String (SAS) comparison can be

foiled using speech synthesis techniques [89]. In practice, of course, the most common

threat to these systems is simple laziness: research demonstrates that only a small

percentage of OTR and ZRTP avail themselves of these verification mechanisms in

the first place [87, 97]. This motivates the need for alternative techniques.

Ideally, these authentication techniques would have attack detection built-in with-

out the need for explicit human intervention. Additionally, their security should rely

on a challenge that would be difficult for an adversary to solve without breaking some

strong assumption.

Employing human authentication. An important realization for building systems

with otherwise weak security guarantees was that in many scenarios the adversary is an

automated program with strict limitations on its ability to imitate human behaviors.

This suggests that Hard AI problems, problems that are currently consider infeasible

for AI but are tractable for humans, can be leveraged to harden systems against these

automated adversaries. Naor introduced this idea in 1996 [69] and proposed several

potential problems that could be used. Perhaps most famously, CAPTCHAs formalize

this notion and introduce the idea of using distorted images as a way to stop bots

from interacting with online services [98]. Recently there has been interest in building

cryptography on top of CAPTCHAs and related problems [18, 55]. In these schemes,

14

the security of the system is formally tied to the hardness of some AI problem. We

detail related work in this space that is tangential to our contributions in Section 5.6.

These Hard AI problems have been informally applied to a posteriori authenticated

key agreement in the form of forced latency protocols introduced by Rivest and

Shamir’s Interlock [81] and further developed by Wilcox-O’Hearn [101] and Chaum [22,

88]. These forced latency protocols rely on the idea that messages generated by an

adversary would result in "semantic irregularities" that are detectable by the honest

parties. A communicating party sends a commitment to a message, waits some interval

of time, and then reveals the message. If an adversary wishes to modify this message,

they must wait to obtain the message before sending over the commitment to the

receiving party. After waiting the established interval of time, it then sends over the

message to the receiver. Thus, in these protocols the presence of an active attacker

significantly increases the latency of the communication. By including key information

in the commitment, communicating parties can use a forced latency protocol to detect

whether an attack on the key agreement occurred.

While these forced latency protocols are very interesting as a posteriori authen-

ticated key agreement protocols, they lack a great deal of formalism. The essential

notion of "semantic irregularities" is not well defined nor have the protocols been

clearly formalized or proven. Moreover, these protocols were proposed in an era when

online communication was primarily conducted through textual means, and even in

this limited setting the results were not evaluated. Modern Internet communications

include full-motion video and audio calling, which can greatly enhance the potential of

these ideas, provided that appropriate protocols can be developed for this new setting.

Strengthening latency protocols. In this work we propose a new class of protocol

for a posteriori key agreement and encryption that is designed to facilitate secure

audio/video communications. Our protocol achieves strong security guarantees in

a setting where parties do not possess reliable public key distribution, under the

15

(non-cryptographic) assumption that two communicating parties can distinguish

the behavior of an impersonating adversary over the course of a communication

session. Unlike previous techniques, our approach does not depend on an optional

SAS comparison ceremony, nor does it require an out-of-band channel.

1.3.1 Our Contributions

More concretely, our contributions are as follows:

Modeling human authentication. We place the work of Chaum and Rivest and

Shamir on firmer ground, by providing a model that formalizes the “semantic

irregularity” into a well-defined problem of recognizing whether you are having

a conversation with a specific human. We then present a complete framework

for secure channel establishment called human authenticated secure communi-

cations (HASC) that models a secure communication scheme based on human

authentication.

The LATENT protocol. We describe a general framework for using human

authentication to detect man-in-the-middle attacks on secure communications.

The resulting protocol approach, called LATENT, uses committing encryption

to ensure that attackers must either (1) emulate the behavior of a specific human

being, or else (2) engage in attacks that produce measurable effects on the

protocol, specifically an increase in end-to-end latency. We formally define the

resulting protocol and prove its security in the HASC model.

LATENT-WebRTC. While the previous contributions help to place forced latency

protocols onto firmer theoretical ground, they leave an important question: do

these protocols work in practice? To explore this, we implement a prototype

variant of the LATENT protocol for secure video, modifying the WebRTC

standard to incorporate our protocol ideas. We then measure the effectiveness of

16

our protocol at detecting interception by a sophisticated attacker who can inject

artificial network delay in an effort to fool our detection. We provide empirical

measures of our approach and evaluate the system end-to-end.

1.3.2 Limitations

We want to be clear about the limitations of our work. Our work does not imply that

our LATENT protocol is future proof. The landscape of what is considered a Hard AI

problem is constantly evolving, and it is unlikely that many of today’s problems will

continue to be hard down the line. We believe our work is valuable for the following

reasons:

1. We believe that providing a way to formally connect the security of an authen-

tication protocol to a Hard AI problem is a worthwhile exercise. While other

systems such as ZRTP or Interlock attempt to make use of human authentication

techniques, the lack of formalism means it is not clear if solving the related Hard

AI problem is a necessary and sufficient condition for breaking the system.

2. Even if our approach does not remain secure in the long term, designing a system

for today’s environment lays the foundation for continuing to integrate Hard

AI techniques in authentication. CAPTCHAs are a prominent example of the

benefits of a formal connection between cryptography and Hard AI problems,

and while the original CAPTCHA designs are no longer secure, there continues

to be work [30] in the search for novel ways to build CAPTCHAs.

3. While our setting does not capture all possible network scenarios, we believe

attempting to model around common network conditions is still instructive.

Indeed, our assumptions still lead to many nontrivial design decisions, and

we believe these serve as an important foundation for designing more robust

systems.

17

1.4 Bibliographic Notes

The result on BlockSci and its application is based on contributions to joint work [50,

51] with Harry A. Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin

Plattner, and Arvind Narayanan that appeared in USENIX 2020. The result on

reducing bandwidth in mixing cryptocurrencies is based on joint work [21] with

Matthew Green that appeared in IEEE European Symposium on Security and Privacy

Workshop on Security and Privacy on the Blockchain 2018. The result on detecting

Man-in-the-Middle attacks using network latency and reverse Turing tests is based on

joint work with Matthew Green that is currently in submission.

1.5 Outline of the Thesis

In Chapter 2 we begin by recalling some cryptographic preliminaries and giving an

overview of blockchains. In Chapter 3, we present our results on building and applying

a blockchain analysis platform. In Chapter 4, we present our result in reducing

bandwidth in mixing cryptocurrencies. Finally, we present our results on how to

detect Man-in-the-Middle attacks using network latency and reverse Turing tests in

Chapter 5.

18

Chapter 2

Background

2.1 Cryptographic Preliminaries

In what follows, a PPT adversary A is a probabilistic interactive Turing Machine

that runs in polynomial time in the security parameter λ. We will drop the security

parameter λ from the notation when it is implicit.

2.1.1 Diffie-Hellman Contributory Key Exchange

Let G be a group of prime order q. Let g be a generator of G. A Diffie-Hellman Key

Exchange between two parties A, B consists of the following steps:

1. Each party generates a Diffie-Hellman key pair as follows: a
$← Zq (resp. b

$← Zq).

(a, ga) is the key pair for party A (resp. (b, gb) is the key pair for party B).

2. The two parties exchange the public key share ga (resp. gb) with the other party.

3. The shared key is computed as gab

The contributory property of Diffie-Hellman Key Exchange is described informally

as the requirement that neither party can force the derived key to be a particular

value. In the two party case, this is extended to claim an adversary cannot conduct a

19

key exchange with two parties independently and have them derive the same key1.

We capture this property in the following definition.

Definition 2.1. We say that the Diffie-Hellman Key Exchange is contributory if for

all PPT adversaries A there exists a negligible function ν(·) such that

Pr

[
gab′ = ga′b

⏐⏐⏐⏐⏐ (a, ga)← A; (b, gb)← B
a′, b′ ← A(1λ, ga, gb)

]
⩽ ν(1λ)

2.1.2 Pseudo-Random Function

A pseudo-random function is an algorithm PRF. This algorithm implements a deter-

ministic function y = PRF(k, x), taking as input a key k ∈ KPRF and some bit string

x, and returning a string z ∈ {0, 1}µ.

Definition 2.2. Consider the following security experiment played between a chal-

lenger C and an adversary A.

1. The challenger samples k
$← KPRF uniformly random.

2. The adversary may query arbitrary values xi to the challenger. The challenger

replies to each query with yi = PRF(k, xi). Here, i is an index, ranging from

1 ≤ i ≤ q for some q ∈ N. Queries can be made adaptively.

3. Eventually, the adversary outputs value x and a special symbol ⊥. The challenger

sets y0 = PRF(k, x) and samples y1
$← {0, 1}µ uniformly random. Then it tosses

a coin b
$← {0, 1}, and returns zb to the adversary.

4. Finally, the adversary outputs a guess b′ ∈ {0, 1}.

A pseudo-random function is said to be secure if for all PPT adversaries A there

exists a negligible function ν(·) such that
1We ignore the trivial case where the adversary sets both keys to g0

20

|Pr[b′ = b]− 1/2| ⩽ ν(1λ)

2.1.3 Authenticated Encryption with Associated Data

We follow the definition of Rogaway [83] where an authenticated encryption scheme

with associated data is an tuple (KeyGen, Enc, Dec) that are defined as follows:

• KeyGen(1λ, K)→ k, n: Takes in as input 1λ where λ is the security parameter

and a long term key K. Then it samples n
$← {0, 1}ℓ, where ℓ is the length of

nonces for this AEAD scheme. It returns k := KDF(K, n) and n.

• Enc(k, M, D)→ C: Takes as input a key k, a plaintext M , additional data to

authenticate D and returns a ciphertext C.

• Dec(k, C, D) → M ∈ {⊥} ∪ {0, 1}∗: Takes in a key k, a ciphertext C, and

additional data to authenticate D and if the ciphertext was validly generated

under k it returns the plaintext. Otherwise it returns ⊥.

For correctness we required that Dec(k, Enc(k, M, D), D) = M . We informally

restate the security properties of an AEAD scheme. An AEAD scheme has privacy if an

A’s advantage in distinguishing between encryptions of different plaintexts AdvP RIV

is bounded by a negligible function. An AEAD scheme has non-malleabilty if for a

ciphertext C ← Enc(k, M, D), A’s advantage in producing a C ′, D′ such that D′ ̸= D

and Dec(k, C ′, D′) ̸=⊥, AdvAUT H , is bounded by a negligible function.

We note that in practice an AEAD scheme satisfying these properties is often

considered to be committing encryption, where the ciphertext is bound to a message

and the key is considered an opening for the commitment. However, there have been

some recent works [20, 27] that found that some AEAD schemes do not meet strong

notions of committing encryption. While a general AEAD scheme is sufficient for the

setting in this work, caution must be taken to not conflate these two primitives.

21

2.1.4 Collision-Resistant Hash Functions

A collision-resistant hash function is a function H : {0, 1}∗ → {0, 1}n.

Definition 2.3. Consider the following security experiment CRA
H with an adversary

A.

1. The adversary A outputs a pair of messages X, X ′.

2. If H(X) = H(X ′) and X ̸= X ′, output 1, otherwise output 0.

A collision-resistant hash function is said to be secure if for all PPT adversaries

A there exists a negligible function ν(·) such that

Pr[CRA
H ⇒ 1] ⩽ ν(1λ)

2.1.5 Ring Signatures

A standard ring signature scheme comprises three (possibly) probabilistic algorithms:2

• KeyGen(1λ). On input a security parameter λ, outputs a keypair pk, sk.

• RSign((pk1, . . . , pkn), j, sk, m): Given a set of public keys (pk1, . . . , pkn), a mes-

sage m and the index j and secret key of the signer sk, outputs a ring signature

σ.

• RVerify((pk1, . . . , pkn), m, σ): On input a set of public key (pk1, . . . , pkn), a

signature σ and a message m, outputs 1 if the signature is valid and 0 otherwise.

There are many ring signature variants, and each offers different features. Infor-

mally, all ring signatures are expected to satisfy at least the following properties:
2Some ring signatures also require a global Setup algorithm that generates a common reference

string (CRS). We omit this here.

22

• Correctness: Any honestly generated ring signature should be considered valid

by any verifier.

• Unforgeability: Adversaries should have negligible probability of forging a ring

signature. Here forgery is defined as producing a ring signature for a message m

and ring R without the signer being a member of R. Unforgeability must hold

even when the adversary can adaptively choose messages and groups to obtain

ring signatures on.

• Anonymity: All adversaries (who may be other ring members) should have at

a most negligible advantage in identifying the true signer.

2.2 Blockchains

Blockchains are decentralized append-only databases, sometimes also referred to as

a decentralized ledger. A blockchain consists of a series of records, known as blocks,

where each block contains a cryptographic hash of the previous block, timestamp, and

transaction data. This securely links the blocks together as altering a prior block

would require altering all subsequent blocks as well. The system is made up of a

decentralized peer-to-peer network of nodes, where each node has a local copy of the

blockchain. Updates to the blockchain are performed through a consensus protocol,

where nodes come together to validate and add new blocks. In practice, the state

of the blockchain is what the majority of the nodes agree upon. The two prominent

use-cases of blockchains are cryptocurrencies and smart contracts.

A cryptocurrency is a blockchain where blocks are generated through a mining

process. This mining is part of the consensus algorithm and dictates who gets to

generate the next block. The two main ways this is determined is Proof-of-Work, where

a node demonstrates it has completed some computational task, and Proof-of-Stake,

where a node is selected based on its current stake in the system. Miners, the nodes

23

who are able to generate the next block, obtain currency from both a reward for

generating the block and transaction fees, a fee paid by the transactions included in

the block. Users can obtain cryptocurrency from exchanges, where other currencies

are exchanged into a cryptocurrency. They can then pay other users on the network by

creating transactions, where a payment is not considered complete until it is included

in a block. This enables for a robust payment system without the need for a central

intermediary.

Smart contracts on the other hand, are a form of distributed application. In these

systems, users can create executable scripts to be included in blocks. These scripts

can then be executed by the blockchain network. For example, one could generate an

escrow protocol that sends value from one party to another if a specified condition is

met. While smart contract platforms, such as Ethereum, are an important part of the

blockchain ecosystem, they are out of scope for our work.

2.2.1 Bitcoin-like Blockchains

Bitcoin [68] can be considered the parent of modern blockchain technologies. Most

current blockchains take at least some, if not a majority, of their design choices

from Bitcoin. Bitcoin operates with a Proof-of-Work consensus protocol, with a new

block being added roughly every 10 minutes. Users are identified by their bitcoin

address, a pseudonym that is used to specify the sender and receiver of a transaction.

Transactions are made up of a series of inputs and outputs, where the input and

output must have the same total. Transaction outputs (TXOs) assign value to a

specific address. Transaction inputs are all references to previous unspent transaction

outputs (UTXOs), where in order to spend an input, the spender must show they

control the address of the associated output. Blockchains that follow this design,

in particular the "each input spends one output" UTXO paradigm, are considered

Bitcoin-like. Examples of Bitcoin-like blockchains are Litecoin, Namecoin, and Dash.

24

These blockchains generally support basic scripts that determine how outputs can

be redeemed. A common script is the "pay-to-public-key-hash" (P2PKH), where to

spend an output, the redeemer must provide both a public key that corresponds to

the included hash as well as a digital signature using the corresponding private key.

Other blockchains add further scripts to extend how the cryptocurrency can be used

or to add privacy.

2.2.2 Monero

Monero is a privacy-centered cryptocurrency that is based on the CryptoNote proto-

col [85]. While it shares many design similarities to Bitcoin, it makes a fundamental

change that puts it in a separate class of protocols. This change is its use of ring

signatures in the redemption of outputs. Rather than the "one input spends one

output" paradigm of Bitcoin, these ring signatures allow a spender to provide a set of

possible outputs that are being spent with a proof that they control one of the outputs

in that set. This allows the sender to hide which outputs they control, providing

privacy. Consequently, there is no longer a well defined UTXO set as it is unclear which

outputs have actually been spent and which are being used as a cover set. However,

Monero includes a mechanism to still prevent double spending of any outputs. Monero

additionally supports stealth addresses, cryptographically derived one-time addresses

that hide whether multiple payments were made to a single address. Additionally,

Monero supports confidential transactions where the value of the inputs and outputs

in a transaction are hidden as well. As a result, all outputs look the same to an

outsider, even if they hold different amounts of value. This greatly simplifies the

process of making a cover set when creating a transaction.

25

Chapter 3

Design and applications of a
blockchain analysis platform

3.1 Design and architecture

Figure 3-1 shows an overview of BlockSci’s architecture. There are two routes for

importing data into BlockSci (Section 3.1.1). Through either route, the data is con-

verted by the parser into the BlockSci Data (Section 3.1.2), which can be incrementally

updated as new blocks come in. The analysis library loads this data as an in-memory

database, which the user can either query directly (in C++) or through a Jupyter

notebook interface (Section 3.1.4).

A recurring theme in this section is that since BlockSci is a domain-specific database,

we are able to make assumptions about the schema and the workload that allow us to

achieve large performance gains and an expressive interface. Both this broad lesson

and some of our specific optimizations may be applicable to other domains.

3.1.1 Recording and importing data

Design decision: which blockchains should BlockSci support? There are

hundreds of blockchains, some of which differ from Bitcoin in minor ways and others

drastically. As we aim to provide a common interface for the analysis of all supported

blockchains, supporting too few blockchains (e.g., just Bitcoin) limits usefulness, but

26

Network P2P
node

Parser

Raw
blockchain

data

JSON-RPC
importer

Custom
importer

BlockSciFull Node Software

Transaction graph
Scripts & additional data

Indexes
BlockSci Data

Analysis
library

Notebook
interface

P2P data
Price data

Address tags
User-supplied data

Figure 3-1. Overview of BlockSci’s architecture.

supporting too many different blockchains would complicate the interface and make

optimizations harder.

Recall that the Bitcoin blockchain consists primarily of a directed acyclic graph

of transactions. The edges connecting transactions have attributes, i.e., addresses or

scripts, attached to them. Transactions are grouped into blocks which are arranged

in a linear chain, with a small amount of metadata per block. BlockSci supports

blockchains that follow this basic structure. For example, Litecoin makes no changes

to the data structure, and is thus fully supported. Cryptocurrencies that introduce

changes to the script operations may be supported only partially, but the user can

parse unknown scripts with a few lines of code. Zcash is also supported, at least to

the extent that Zcash blockchain analysis is even possible: it introduces a complex

script that includes zero-knowledge proofs, but these aspects are parceled away in a

special type of address that is not publicly legible by design.

An example of an unsupported blockchain is Monero, as it doesn’t follow the “each

input spends one output” paradigm. Its transaction graph contains additional edges,

the mixins. Supporting it would require changes to the data layout as well as the

programmer interface. Similarly, Ethereum departs from the transaction-graph model,

27

and further, its script is vastly different from and more complex than that of Bitcoin.

In our analyses we have worked with six blockchains: Bitcoin, Bitcoin Cash,

Litecoin, Namecoin, Dash, and Zcash. Many other cryptocurrencies make no changes

to the blockchain format, and so should be supported with no changes to BlockSci.

Multi-chain mode. By default, BlockSci operates on a single blockchain. We

also provide a multi-chain mode in which several forked chains (e.g., Bitcoin ≺

Bitcoin Cash ≺ Bitcoin SV) can be combined in an optimized, memory-efficient multi-

chain configuration. In this mode, data common to forked chains (such as pre-fork

transactions) need to be loaded into memory only once. Address data is deduplicated

across forks, allowing for novel cross-chain analyses.

Importer. For cryptocurrencies with small blockchains where import performance

is not a concern, we use the JSON-RPC interface. The advantage of this approach is

versatility, as many cryptocurrencies aim to conform to a standard JSON-RPC schema

regardless of the on-disk data structures and serialization format. For larger blockchains

(currently only Bitcoin and its forks are large enough for import performance to be a

concern), we use our own high-performance importer that directly reads the raw data

on disk.

Mempool recorder. BlockSci can optionally record mempool data, that is,

timestamps of transactions that are broadcast to the P2P network and are waiting

to be included in the blockchain. The waiting time of included transactions provides

valuable data for economic analyses and isn’t recorded in the blockchain itself. When

users choose to collect these timestamps, they are accessible through the same interface

as all other blockchain data.

3.1.2 BlockSci Data

Key challenge: finding a data layout that gives a good trade-off between

memory efficiency and performance.

28

Description Bits Description Bits

Description Bits

Real size 32

Base size 32

Locktime 32

Input count 16

Output count 16

Inputs
. . .

128
(each)

Outputs
. . .

128
(each)

Spent tx ID 32

Address ID 32

Value 60

Address type 4

Spending tx ID 32

Address ID 32

Value 60

Address type 4

Figure 3-2. Transaction structure

Based on our experience with empirical blockchain analysis over several years, we

divide the available data into three categories and combine it in a hybrid scheme that

provides us with a reasonable trade-off between efficient use of memory and speed of

access:

1. The core transaction graph is required for most analyses and always loaded

in-memory. It is stored in a row-based format.

2. Scripts and additional data is required for only a subset of analyses. It is stored

in a hybrid (partially column-based, partially row-based) format and is loaded

on-demand.

3. Indexes to look up individual transactions or addresses by hash are stored in a

separate database on disk.

We make further optimizations to improve performance, including using fixed-size

encodings for data fields where possible, optimizing the memory layout for locality of

reference, linking outputs to inputs for efficient traversal, and sharing identical data

across chains in multi-chain mode.

Transaction graph. The core transaction graph is stored in a single sequential

table of transactions, with entries having the structure shown in Figure 3-2. Note that

entries have variable lengths, due to the variable number of inputs and outputs (there

29

is a separate array of offsets for indexing, due to the variable entry lengths). Normally

this would necessitate entries to be allocated in the heap, rather than contiguously,

which would have worse memory consumption and worse locality of reference.

However, because of the append-only property of the blockchain, there are only

two types of modifications that are made to the transactions table: appending entries

(due to new transactions) and length-preserving edits to existing entries (when existing

UTXOs are consumed by new transactions). This allows us to create a table that is

stored as flat file on disk that grows linearly as new blocks are created. To load the

file for analysis, it is mapped into memory. The on-disk representation continues to

grow (and be modified in place), but the analysis library provides a static view.

Layout and locality. The main advantage of the transaction graph layout is

spatial locality of reference. Analyses that iterate over transactions block-by-block

exhibit strong locality and benefit from caching. Such analyses will remain feasible

even on machines with insufficient memory to load the entire transaction graph,

because disk access will be sequential.

The layout stores both inputs and outputs as part of a transaction, resulting in a

small amount of duplication (a space cost of about 19 %), but resulting in a significant

speedup for sequential iteration compared to a normalized layout. Variants of the

layout are possible depending on the types of iteration for which we wish to optimize

performance.

Additional data. Beyond the core transaction graph, BlockSci provides access

to additional data that are necessary for some types of analyses. These include script

data, transaction hashes and version numbers, input sequence numbers, input-output

linkages, and raw data contained in coinbase transactions. Keeping this data separate

reduces memory usage in exchange for a small reduction in speed of access for analyses

that require this data (e.g., 10 % slower for a typical query that iterates over transaction

metadata).

30

Scripts. BlockSci categorizes scripts into 5 generic types, each of which contains

scripts of one or more address formats: script-hash (for script-hash and witness-script-

hash scripts), pubkey (for raw pubkey, pubkey-hash, individual pubkeys in a multisig

script, and witness-pubkey-hash scripts), multisig, null data, and unknown witness

scripts. All other scripts are categorized as nonstandard. Internally, script data of

different address formats is deduplicated: for example, a public key used in both a

pubkey-hash and a witness-pubkey-hash script is stored only once. For nonstandard

scripts, BlockSci stores the entire script data which can be parsed with only a few

lines of code by the analyst.

Indexes. Transaction hashes and addresses are stored in flat files and can easily be

looked up by transaction/address ID. The reverse mapping from hash to ID, however,

is stored in separate indexes in RocksDB databases (the address index is also used by

the parser). Accessing these indexes is almost never performance critical in scientific

analysis—in fact, many analyses don’t require the indexes at all. Besides the ability to

look up transactions and addresses by hash, we also provide a lookup for all outputs

associated with specific addresses.

Multi-chain mode. To support forked blockchains, we make three modifications

to the layout described above. First, forked chains often share a large common history

with their parent chain. We load these identical blocks only once, and the analysis

library provides the abstraction of a full chain for each fork. Second, the fixed-size

encoding does not permit storing data of multiple chains. For example, UTXOs at fork

height can be spent in both the parent and the forked chains, but the fixed-length field

can only hold a single index for the spending transaction (cf. Figure 3-2). Each fork

thus needs a separate flat file that contains the spending transactions’ IDs for outputs

created before the fork. Third, the index that maps addresses to outputs requires an

additional chain identifier to distinguish between outputs on different chains.

31

3.1.3 Address Linking

Address linking (or clustering) is a key step in many analytic tasks including under-

standing trends over time and evaluating privacy. Recall that cryptocurrency users

can trivially generate new addresses, and most wallets take advantage of this ability.

Nevertheless, addresses controlled by the same user or entity may be linked to each

other, albeit imperfectly, through various heuristics.

Two common types of heuristics include (1) inputs spent in the same transaction

are controlled by the same entity, and (2) identifying a change address based on

client software or user behavior (e.g., [63]). As the multi-input heuristic does not

apply to CoinJoin transactions, we add an exception for those transactions, which

we identify using the algorithm described by Goldfeder at al. [34]. Change address

identification is challenging due to the variety of existing client software. BlockSci

comes with several—as of this writing, ten—change address heuristics that can be

used individually or in combination with each other, allowing the analyst to choose or

create a heuristic best suited for their analysis task.

These heuristics create links (edges) in a graph of addresses. By iterating over all

transactions and applying the union-find algorithm on the contained addresses we

generate clusters of addresses. This set of clusters is the output of address linking. We

use the union-find implementation by Jakob [45]. Clustering takes only a few minutes,

allowing the analyst to recompute and compare clusters with different heuristics.

In multi-chain mode, BlockSci can enhance the clustering of a target chain using

information from forked chains. Addresses that exist on multiple chains may be used

differently on them, e.g., combined with a different set of input addresses. Cross-chain

address clustering uses these additional links to enhance the clustering of the target

chain.

Figure 3-3 shows the distribution of cluster sizes for Bitcoin using the multi-input

32

100 101 102 103

Cluster size

100

102

104

106

108

Nu
m

be
r o

f c
lu

st
er

s

Figure 3-3. Distribution of sizes of address clusters in Bitcoin after applying address-
linking heuristics. Sizes 1–2,000 are shown here but there are many clusters that are much
larger.

heuristic only. There are about 474 million clusters in total, of which about 380 million

are single addresses, and about 93 million have between 2 and 20,000 addresses. There

are 809 clusters with over 20,000 addresses, including one supercluster with over 17

million addresses.

Address linking is inherently imperfect, and ground truth is difficult to obtain on

a large scale, since it requires interacting with service providers. We do not attempt

to be comprehensive, resulting in false negatives (i.e., missed edges, resulting in more

clusters than truly exist). More perniciously, most of the heuristics are also subject to

false positives (i.e., spurious edges), which can lead to “cluster collapse”. In particular,

it is likely that the supercluster above is a result of such a collapse.

3.1.4 Programmer interface

Key challenge: combining speed and expressiveness. BlockSci aims to come

close to the speed of C++ while providing expressiveness and convenience of a high-

level language, namely Python, for as many analysis tasks as possible.

33

Python interface. Jupyter notebook is a popular Python interface for data

science. It allows packaging together code, visualization, and documentation, enabling

easy sharing and reproducibility of scientific findings. We expose the C++ BlockSci

library to Python through the pybind11 interface [46]. While we intend Jupyter

notebook to be the main interface to BlockSci, it is straightforward to utilize the

analysis library directly from standalone C++ or Python programs and derive most

of the benefits of BlockSci.

Python is not a language known for performance; unsurprisingly, we find that it is

significantly slower to run queries through the Python interface. Nevertheless, our

goal is to allow the programmer to spend most of their time interacting with the

Jupyter notebook, while simultaneously ensuring that the bottleneck parts of queries

execute as C++ code. We illustrate this through an example.

Suppose our goal is to find transactions with anomalously high transaction fees —

say 0.1 bitcoins (107 satoshis), worth about 720 US dollars as of December 2019. The

slowest way to do this would be to write the entire query in Python:
[tx for block in chain for tx in block if sum(txin.value for txin in

tx.inputs) - sum(txout.value for txout in tx.outputs) > 10**7]

This way does not result in acceptable performance. A first step to improve both

performance and conciseness is to have a built-in function to compute the fee:
[tx for block in chain for tx in block if tx.fee > 10**7]

Although tx.fee calls a C++ function, we model it as a property in the Python

interface. Most helper functions are modeled as properties, unless they are expected

to take significant time to compute, or take arguments. tx.fee is just one of many

helpers exposed by the Python library that execute as C++. We’ve found that most

of the analyses in Section 3.2 benefit from a small number of helper functions.

34

Figure 3-4. Overview of Dash privacy. First, in the Denominate step, a coin is
broken down into valid denominations and the remainder is returned to the original address.
Here, addr2, addr3, and addr4 are the new denominated coins and the leftover 0.99988
Dash is sent back to addr1. Then for each denominated coin, there will be 2–8 rounds of
mixing. When a user wishes to make a PrivateSend, the wallet will use these mixed coins
as inputs. The input amount must be a multiple of the smallest denomination. Additionally
another mixed input will be included as a fee. Here, the first two inputs provide the value
for the output. The third input is for the fee. This value will generally be 0.0100001 Dash,
but if coins of that denomination are not available, the wallet selects a mixed coin of the
smallest denomination it possesses.

3.2 Applications

We now present two analyses that highlight BlockSci’s effectiveness at supporting

blockchain analyses. The first relates to privacy and confidentiality, the second to the

economics of cryptocurrencies. Together these provide a clearer picture behind how

blockchains are used in practice.

3.2.1 Cluster intersection attack on Dash

Goldfeder et al. recently showed the effectiveness of the cluster intersection attack

against Bitcoin mixing [34]. The attack seeks to link mixed coins to the cluster of

wallet addresses that originally held the coins before mixing. The intuition behind the

attack is that outputs mixed in different transactions are often spent together. Thus,

when these coins are spent together, we trace each one back to a (potentially large)

set of possible address clusters and examine the intersection of these sets. This will

likely result in a unique cluster. We conclude that the mixed outputs are linked to

the wallet represented by this cluster.

35

Figure 3-5 PrivateSend wallet simulation.
Input: desired amount to spend in a PrivateSend
Output: a set of unspent outputs to add up to this value

1: procedure SelectPSInputs(send_amount)
2: T← set of transactions that have at least one

output that is unspent and owned by us
3: T← Sort T by (denomination, transaction hash)
4: selected← {}
5: for each t ∈ T do:
6: for each output ∈ t.outputs do:
7: if value(selected) + value(output)
8: > send_amount then
9: break

10: end if
11: selected.insert(output)
12: if value(selected) == send_amount then
13: return selected
14: end if
15: end for
16: end for
17: return "Insufficient Funds"
18: end procedure

36

This is a significant weakness of mixing as an anonymity technique. In this section

we provide evidence that Dash, a cryptocurrency designed with mixing in mind, is

susceptible to this attack.

Overview of Dash. Dash is one of three popular privacy-focused altcoins (alter-

native cryptocurrencies), along with Monero and Zcash. It is the largest of the three

by market capitalization as of August 2017 — over USD 2 billion. It is supported

by a handful of vendors and a few alternative payment processors [90]. Dash is a

fork of Bitcoin with a few key changes. It has a shorter block time (from 10 to 2.5

minutes) and uses the X11 hashing algorithm. It also has a two-tiered network, where

nodes controlling 1,000 Dash or more have the option of becoming “Masternodes”

— full nodes that participate in the consensus algorithm, facilitate special types of

transactions, and get a cut of the mining reward for their service. One of these special

types of transactions is PrivateSend.

Dash’s PrivateSend uses CoinJoin-style mixing, whereas Monero uses mixing based

on ring signatures and Zcash provides cryptographic untraceability, which is a stronger

(and provable) anonymity property. Mixing is not mandatory in Dash, but it is

integrated into the default wallet and therefore easy to use. When a user chooses to

start mixing, all her coins (up to a configurable limit with a large default value) are

mixed with several rounds of mixing. The number of rounds is also configurable, but

the default is 2. These mixed coins are then available for PrivateSend transactions.

Mix transactions in Dash use power-of-10 denominations. Therefore coins are

broken up into these standard sizes before mixing is initiated. The mix transactions

themselves each have three participants, each of whom contributes between 5 and

9 coins to be mixed. Finally, the PrivateSend transactions spend a set of mixed

power-of-10 denominated outputs. Each of these three types of transactions has a

distinct signature that is readily detectable on the Dash blockchain. In particular, the

denominations are 1.00001 ∗ 10k instead of exactly 10k, and thus the values are highly

37

Figure 3-6. Success rate of the cluster intersection attack on simulated Dash PrivateSend
transactions as a function of the number of inputs.

unlikely to occur by chance. See Figure 3-4.

Dash and cluster intersection. Two features of the PrivateSend implementation

combine to make Dash especially vulnerable to the cluster intersection attack. First,

change addresses are not allowed for these transactions. This means that PrivateSend

spenders must produce “exact change”, which requires combining a large number of

coins. Second, the denominations being powers of 10 (as opposed to, say, powers of

2) further increases the number of inputs in a typical transaction. For example, to

pay 85 Dash, the sender must combine at least 8+5=13 inputs to avoid losing money.

Figure 3-7 shows the distribution of the number of inputs in PrivateSend transactions.

Most such transactions have 3 or more inputs; the mean is 40.1 and the median is 12.

Due to the large number of inputs, no auxiliary information is necessary to carry

38

Figure 3-7. Distribution of the number of inputs of Dash PrivateSend transactions

out the cluster intersection attack on Dash. The adversary — anyone observing the

public blockchain — can infer that all inputs to a PrivateSend must trace back to

the same wallet cluster. Thus, in the above example of a payment of 85 dash, the

adversary knows that all 13 sets of clusters must have an element in common. The

chance that there is more than one such cluster gets smaller and smaller as the number

of clusters increases.

Of course, auxiliary information can make this attack more powerful. Beyond the

risks posed by tracking cookies in [34], the Masternodes learn the input-output linkage

for the mixing rounds that they facilitate. The privileged status of Masternodes in

the Dash p2p network raises other potential privacy vulnerabilities [25], but that is

not our focus.

39

Experimental setup. To perform this attack, we used shapeshift.io (an online

service for conversion between cryptocurrencies) to convert Bitcoin into Dash, which

we withdrew into a single address. We used the default Dash wallet to mix 0.55 Dash

using the default parameters, namely 2 rounds of mixing. We obtained 55 separate

mixed outputs, each 0.01 Dash.

Next, we re-implemented the PrivateSend algorithm from the Dash wallet code

on top of BlockSci. Given a desired spend amount, the algorithm selects a set of

mixed inputs from the wallet that sum to this amount. It is shown in Figure 3-5. This

allowed us to simulate our own PrivateSend transactions instead of actually making

them. The latter would have required paying a transaction fee for each data point;

generating the data shown below would have required spending several hundred USD

worth of Dash in transaction fees, and holding several tens of thousands of USD worth

of Dash.

For each of the simulated PrivateSends, we ran the cluster intersection attack. We

consider the attack successful if it results in a unique cluster of addresses, namely the

single address that we started from.

Results. Figure 3-6 shows the success rate of the cluster intersection attack,

showing a sharp increase in accuracy as the number of inputs increases. For transactions

with 12 or more inputs (coincidentally, the median number of inputs of PrivateSend

transactions on the blockchain), the attack is always accurate.

In the above experimental setup, we started from a single pre-mixing address

holding Dash. In reality, users may obtain Dash in multiple installments and hold

these coins in their wallet in a manner that is not easily linkable to each other.

Relying on this is unwise for privacy, as it is a form of security through obscurity;

nevertheless, it is a factor that will significantly hurt the accuracy of the attack in

practice. Evaluating the attack on existing PrivateSend transactions is challenging

due to the lack of ground truth, and is a topic for future work.

40

Jan
2017

Jan
2018

Jan
2019

Jan
2020

Jul Jul Jul0M

2M

4M

6M

8M

10M

BT
C

m
ov

ed
 p

er
 d

ay
Naive estimate
Our estimate

Figure 3-8. Two estimates of the velocity of bitcoins.

3.2.2 Improved estimates of the velocity of cryptocurrencies

The velocity of money is the frequency with which one unit of currency is used for

purchases in a unit of time. It can provide an insight into the extent to which money

is used as a medium of exchange versus a store of value.

In most cases it is not possible to infer the purpose behind a cryptocurrency

transaction from the blockchain. However, an alternative definition of the velocity

of money is the frequency with which one unit of currency changes possession in

any manner (whether or not for purchases of goods and services) in a unit of time.

Blockchain analysis may enable estimating the velocity of cryptocurrencies under this

definition.

Even under this simplified definition, it is challenging to estimate the velocity of

cryptocurrencies. A naive method would be to compute the total value of transaction

outputs in a unit of time and divide it by the total value of the money supply during

that period. However, multiple addresses may be controlled by the same entity, and

41

therefore not all transaction outputs represent changes in possession. Meiklejohn et al.

call this “self-churn” [63], a term that we adopt. The impact of self-churn is visually

obvious in the graph of total transaction outputs (Figure 3-8). We would not expect

spikes such as those in early 2017 if the graph reflected actual money demand, which

would be much more stable over time.

To minimize the effect of self-churn, we adopt two heuristics. First, we eliminate

outputs controlled by an address that can be linked to one of the inputs’ addresses

(through address clustering), ignoring “superclusters" to minimize false positives. This

reduces change outputs and transactions that are detectable as an entity “shuffling

their money around”. We also eliminate outputs that are spent within less than k

blocks (we use k = 4). Manual examination suggests that such transactions are highly

likely to represent self-churn, such as “peeling chains” where a large output is broken

down into a series of smaller outputs in a sequence of transactions.

The orange line in Figure 3-8 shows the daily transaction volume on the Bitcoin

blockchain after applying the above two heuristics. With this estimate, the velocity of

Bitcoin works out to 1.2 per month averaged over the period January 2017–June 2018,

compared to 3.9 with the naive metric, and 0.7 over the period July 2018–December

2019, compared to 2.2 with the naive metric. Our revised estimate is not only much

lower but also much more stable over time.

Starting in 2018 the naive estimate drops closer to our improved estimate. We

suppose that this is partially due to scarcity in block space (and a corresponding rise

in transaction fees), which encourages intermediaries to batch multiple payments into

a single transaction, thereby eliminating some of the self-churn that is evident in the

naive estimate earlier. Spikes in the graph, like the one in mid 2019, may represent

large intermediaries (e.g., exchanges) moving large amounts of bitcoin to addresses

with updated access control structures.

We note several caveats. First, this still likely fails to exclude some transfers of

42

value between addresses controlled by the same entity. Without ground truth, it is

hard to be certain how good the estimate is. Second, it doesn’t count transfers of

possession that don’t touch the blockchain. When exchanges, online wallets, and other

intermediaries hold money on behalf of users, payments and transfers of “bitcoins"

might happen even though no actual bitcoins changed hands (as only account balances

in an internal database need to be updated). Nevertheless, we believe that the metric

can be a useful proxy for understanding the use of cryptocurrencies, and possibly for

comparing between cryptocurrencies.

3.2.3 Other applications of BlockSci

Besides our own use, BlockSci has seen a variety of use in both academic and industry

settings. We are currently aware of at least 9 peer-reviewed articles, 6 preprints, and

2 software projects that use BlockSci for blockchain analysis (a full list is available

online1).

The dual topics of privacy and forensics are common among these papers. These

include information leaks from payments and purchases through intermediaries [34],

the use of intermediaries to convert between cryptocurrencies [105], as well as the

identification of entities and the analysis of their behavior in the transaction graph [12,

29, 43, 48, 106]. Many of these results are of interest to law enforcement and regulators,

and we have helped regulators use BlockSci for their own investigations. Two other

themes are issues surrounding the security and scalability of cryptocurrencies [73, 74,

93], as well as economic analyses of cryptocurrencies [4].

BlockSci has also been used as the foundation for specialized blockchain analysis

tools. Boshmaf, Al Jawaheri, and Al Sabah [12] have built a tagging system on top of

BlockSci, and the GraphSense blockchain analytics platform uses BlockSci’s parser

and altcoin support to generate an address graph out of the transaction graph [39].
1https://citp.github.io/BlockSci/studies/

43

https://citp.github.io/BlockSci/studies/

3.3 Conclusion

There is a high level of interest in blockchain analysis among developers, researchers,

and students, leading to an unmet need for effective analysis tools. While general-

purpose in-memory graph databases exist, a tool customized to blockchain data can

take advantage of its append-only nature as well as provide integrated high-performance

routines for common tasks such as address linking.

BlockSci has already been widely used as a research and educational tool. We hope

it will continue to be broadly useful, and plan to keep maintaining it as open-source

software.

44

Chapter 4

Reducing Bandwidth in Mixing
Cryptocurrencies

4.1 Intuition

At a high level, our approach is straightforward: rather than sampling and transmitting

the full set T with each transaction, we define a specialized hash function HK(·) with

some useful properties. To construct a transaction and transaction list T , the spender

first constructs and transmits a key K within the transaction, along with an integer N .

The nature of the function is such that, given this key, any party can now efficiently

compute T as (HK(0), HK(1), . . . , HK(N − 1)).

The challenge is to construct the function H such that the resulting set T will

embed up to M “real” transactions chosen by the spender, without revealing which

transactions are the real ones, and which are cover traffic.1 To do this, we must solve

several problems. First, we require a function H with a compact key K that can be

programmed to incorporate the real transactions at random points. Second, we must

ensure that the remaining “cover” transactions are all sampled from the appropriate

distribution (which may not be uniform). Finally, we need to prove that this technique

is as secure as the naïve sampling approach; i.e., that it does not leak new information
1In practice, this guarantee depends largely on the distribution of the real transactions. We define

an approach that guarantees our technique is “no worse” than the naïve sampling approach.

45

to an attacker who wishes to identify the real transactions.

As a warm up, we begin by describing a simple technique for sampling the cover

set uniformly from the list of all transaction outputs on a ledger consisting of ℓ such

outputs. For purposes of exposition, we will consider the simple case where there is

only one real transaction (M = 1), and we will assume that all parties know the list

of previous transactions.

As an ingredient we require an underlying keyed hash function f : {0, 1}κ ×ZN →

Zℓ, which we model as a random oracle.2 We now define a simple programmable hash

function H : {0, 1}κ × Zℓ × ZN → Zℓ as follows:

Hk,C(i) = fk(i) + C mod ℓ

Notice that a spender, who wishes to embed some real transaction index I ∈ [0, ℓ) in

T , can easily program this function as follows: sample a random k ∈ {0, 1}κ and a

random index j ∈ [0, N). Now compute a value C such that C ≡ I − fk(j) mod ℓ.

This implicitly defines Hk(j) ≡ I mod ℓ and sets each remaining H(i), i ̸= j to be

uniform in Zℓ.

Of course, this simple scheme works only for cases where there is a single real

transaction. In practice, real protocols may require the spender to embed several real

transactions into T . In our main construction, we generalize the above construction by

replacing the single value C with a polynomial P (·) evaluated over a field Fp for some

large prime p. This approach allows us to ensure that for any subset of M distinct

indices j, fk(j) + P (j) ≡ Ij mod ℓ. It remains only to prove that the resulting scheme

is “as secure” as the naïve sampling approach. We provide a security definition for

this claim, and offer a proof in the random oracle model.

Of course, this proposal is not complete. Given a solution such as the one above,

we must still adapt the details so that they work within a real cryptocurrency. In
2Such functions can easily be constructed from any standard cryptographic hash function.

46

later sections of the paper we discuss altering the function H so that the cover traffic

is sampled from a more realistic distribution. Additionally, we address the problem

that our approach may produce duplicate transaction outputs within the transaction

list T , and discuss how to remove these. We provide a detailed discussion of these

aspects of the problem in §4.5.

4.1.1 Outline of this work

The remainder of this work proceeds as follows. In the next two sections we provide

definitions for our schemes. In §4.4 we provide a construction that assumes a uniform

sampling distribution for cover transactions. In §4.5 we discuss sampling for alternative

distributions. In §4.6 we show how our constructions can be integrated with specific

cryptocurrency mixing protocols, and give concrete estimates of transaction size. In

§4.7 we describe some different potential applications for these techniques outside of

cryptocurrency privacy. Finally, §4.8 discusses related work.

4.2 Preliminaries

4.2.1 Notation

We will define ν(·) to be a negligible function. Let A
c≈ B indicate that the distributions

A, B are computationally indistinguishable. We will use D to refer to a specific

distribution for sampling transaction outputs.

4.2.2 Transaction sets

While thus far we have referred to transaction sets, in our main constructions we

will relax the requirement that each element is unique, and we will add an implicit

ordering. Henceforth we will consider T to be an ordered multiset, or merely a list of

transactions.

47

4.2.3 Transaction ledger

We assume the existence of an append-only public ledger of transaction outputs

L = (T0, T1, . . . , Tℓ−1) that is available to all parties in the system. New transaction

outputs are appended to L after they have been verified by the network. By Lℓ we

denote the first ℓ transactions on L.

We will assume that each transaction output Ti ∈ Lℓ can be referenced uniquely

by its index I ∈ {0, . . . , ℓ − 1}; henceforth we will use these indices exclusively to

represent transaction outputs on the ledger.

4.2.4 Keyed hash functions with integer domain and range

Let m, n be positive integers. We define fm,n : {0, 1}κ ×Zm → Zn as a keyed function

that, on input a key k ∈ {0, 1}κ and an integer a ∈ {0, . . . , m− 1}, outputs an integer

b ∈ {0, . . . , n− 1}. We will assume that each pair (m, n) uniquely defines the function

family, and that these functions can be re-constructed efficiently by any party.3 In

our security proofs we will model this function as a random oracle.

4.3 Definitions

The purpose of this work is to define an approach to sampling the transaction list

that produces a compact description. We now define this scheme.

Definition 4.1. A recoverable sampling scheme (RSS) is parameterized by a sampling

distribution D. It consists of two possibly probabilistic algorithms (Sample, Recover)

with the following definition:

SampleD(1λ, ℓ, I, N)→ (T , W). On input a security parameter λ, a ledger size ℓ, a

set of M legitimate transaction indices I = {I0, . . . , IM−1} ∈ ZM
ℓ , and a desired

3Note that functions of this form can be constructed efficiently from any standard underlying
hash function using a variety of techniques.

48

number of total transactions N > M , this algorithm outputs a tuple (ordered

multiset) T containing N (possibly non-unique) elements, and a compact de-

scription W.

RecoverD(W, ℓ)→ T . On input a compact description W and the ledger size ℓ, outputs

the transaction multiset T or the distinguished failure symbol ⊥.

An RSS must satisfy three properties, which we refer to as correctness, compactness,

and security. We define these below.

Correctness. Let (T , W)← SampleD(1λ, ℓ, I, N). For an RSS to be correct, several

requirements must be met for all valid (λ, ℓ, I, N). First, it must hold that T contains

N elements and I ⊂ T . Finally, the following equality must be satisfied:

RecoverD(W, ℓ) = T

Compactness. For an RSS to be useful, it must hold that given a fixed M the size

of the compact description W should grow sublinearly as N increases. We note that

the compactness requirement rules out a class of trivial schemes, including any scheme

that simply outputs W = T .

Security. Intuitively, security for a recoverable sampling scheme requires that the

scheme reveals “no more” information to an attacker than would be revealed by an

ideal implementation that simply samples N −M cover transactions and combines

these with I in a random ordering. To define this form of security, we must first

describe two experiments.

Real experiment. Let (A, λ, ℓ, I, N,D) be the input to the experiment. Compute

(T , W) ← SampleD(1λ, ℓ, I, N) and run A(ℓ, |I|, N, W). The output of the ex-

periment is A’s output.

49

Ideal experiment. Let (B, λ, ℓ, I, N,D) be the input to the experiment. Construct a

multiset C consisting of N−|I| (possibly duplicate) transaction indices (sampled

according to D) from the set Zℓ; and shuffle these values randomly with the

values in I to obtain the ordered list T . Next run B(ℓ, |I|, N, T). The output

of the experiment is B’s output.

We are now prepared to define security for an RSS.

Definition 4.2 (Security for RSS). An RSS Π = (Sample, Recover) is secure if for

every p.p.t. adversary A, sufficiently large λ, and all valid (ℓ, I, N,D), there exists a

p.p.t. B such that the following holds:

Real(A, λ, ℓ, I, N,D) c≈ Ideal(B, λ, ℓ, I, N,D)

Discussion. We note that this is a purely comparative definition. That is, our definition

does not imply that the “ideal” sampling scheme is itself secure for any distribution or

set of input transactions. Indeed, for many values of I the real transactions may be

easily distinguishable from the cover transactions! Addressing that problem is not the

purpose of this work: instead, our goal merely to show that the RSS scheme performs

“no worse” than the ideal approach, while offering an improvement in bandwidth

efficiency.

As an additional note, our ideal experiment implements sampling with replacement,

resulting in the potential for duplicates in the transaction list T . This is slightly

different than some implemented schemes that remove duplicates. We make this

relaxation order to simplify the presentation of the rest of this paper, although in

later sections we address the problem of removing duplicates from this set. Finally, to

simplify our definitions, we do not explicitly include auxiliary inputs to the parties.

This must be done for sequential composition of the primitive. Our constructions

achieve this notion as well.

50

SampleU(1λ, ℓ, I = {I0, . . . , IM−1}, N)

1 : Choose a prime p such that 1/(p/ℓ) ≤ ν(λ).
2 : Construct the keyed hash function f : {0, 1}κ × ZN → Zp.

3 : Sample a random key k ∈ {0, 1}λ.

4 : Sample random {j0, ..., jM−1} ⊂ {0, . . . , N − 1}.
5 : For i = 0 to M − 1 : Choose yji such that fk(ji)− yji ≡ Ii mod ℓ.

6 : Compute a0, ..., aM−1 that define an order-(M − 1) polynomial P (·) over Fp s.t. ∀i ∈ [0, M), P (ji) = yji .
7 : For i = 0 to N − 1 : compute Ti = fk(i)− P (i) mod ℓ.

8 : return T = {T0, . . . , TN−1} and W = (p, k, P, ℓ, N).

RecoverU(W, ℓ)

1 : Construct the keyed hash function f : {0, 1}κ × ZN → Zp.

2 : For i = 0 to N − 1 : compute Ti = fk(i)− P (i) mod ℓ.

3 : return T = {T0, . . . , TN−1}.

Figure 4-1. The RSS uniform sampling and recovery algorithms

4.4 A Uniform Sampling Technique

We begin by describing a technique for sampling the cover set uniformly from the

set of all transactions on a ledger Lℓ. This technique mirrors the approach of certain

protocols such as CryptoNote [85] as implemented in the ByteCoin currency [15].

The algorithms we describe below allow us to embed M real input transactions into

a transaction multiset T of size N , where 0 < M < N . We will assume that both

spender and verifier have access to the ledger Lℓ.

The sampling algorithm. Let Lℓ be the ledger. Let I0, ...IM−1 ∈ Zℓ represent the

indices (into L) of the legitimate input transactions. Let N represent the desired

size of T and M > 1 represent the number of legitimate input transactions (where

M < N). We will make use of a field Fp of prime order p ≫ ℓ (such that 1
p/ℓ

is

negligible). To sample this set, the spender performs the steps in Figure 4-1.

The recovery algorithm. The above algorithm produces a set T that can be used

to construct the transaction. However, the full description of T need not be included

in the transaction. Instead, the spender may include the tuple W = (k, P, ℓ, N). This

51

can be used by the verifier to recover T as described in Figure 4-1.

Efficiency. Our scheme requires sampling a random key, which can be done with

marginal computational effort. In practice we can use an efficient algorithm such as

AES to perform the function of f . Constructing the polynomial also requires minor

computational effort. Using Lagrange polynomials it requires about (n + 1)(2n + 1)

multiplications in Fp to compute the encoding.

Correctness and compactness. Assuming a fixed M , the size of the compact description

W clearly grows at most logarithmically as N increases.4 It is easy to see that the

algorithms above are correct, in the sense that I0, ..., IM−1 is contained within T .

Specifically, there exists {j0, ..., jM−1} ⊂ {0, . . . , N − 1} such that for each ji:

Tji
≡ fN,ℓ(k, ji)− P (ji) mod ℓ.

≡ fN,ℓ(k, ji)− yji
mod ℓ

≡ fN,ℓ(k, ji)− fN,ℓ(k, ji) + Ii mod ℓ

≡ Ii mod ℓ.

4.4.1 Security

We now prove that the above scheme is a secure RSS in the sense of Definition 4.2.

Theorem 4.1. The protocol Π = (Sample, Recover) described above is a secure RSS

if the function f : {0, 1}κ × ZN → Zp is modeled as a random oracle.

Proof. To succeed in our proof, we must show that for every p.p.t. A there ex-

ists a p.p.t. adversary B such that for all p.p.t. distinguishers Z we have that

|Pr [Z(Real(A, λ, ℓ, I, N,U)) = 1]−Pr [Z(Ideal(B, λ, ℓ, I, N,U)) = 1]| ≤ ν(λ) over

all valid ℓ, I, N . Let A be the adversary that interacts in the Real experiment. Given

A we show how to construct B, which satisfies the above requirement.
4And this is only because W contains a representation of N in order to simplify the description of

the algorithm.

52

B conducts the Ideal experiment, and runs A (and answers its random oracle

queries) as follows. When B receives (ℓ, |I|, N, T) from the Ideal challenger, it parses

T = (I0, . . . , IN−1) ∈ FN
p . It then selects p as in the real protocol, samples a random

key k ∈ {0, 1}κ and a random set of coefficients (a0, ..., aM−1) ∈ ZM
p that define the

polynomial P (·). For i = 0 to N − 1, it programs the random oracle such that:5

fk(i) ≡ P (i) + Ii mod ℓ

Finally, it sets W = (p, k, P = (a0, ..., aM−1), ℓ, N) and sends (ℓ, |I|, N, W) to A. When

A produces an output, B uses this as its own output. This completes the simulation.

To complete the proof, we must show that if f·(·) is modeled as a random oracle,

the simulated distribution provided to A is computationally indistinguishable from

the Real experiment on the same inputs. This implies that the distribution of B’s

output must in turn be computationally indistinguishable from that of A in the Real

experiment.

Our proof proceeds via a series of hybrids. The first hybrid represents the

Real experiment, while the final hybrid is distributed as in the Ideal experiment.

We will define Adv[i] to be the quantity |Pr [Z(Hybrid i(A, ℓ, I, N,U)) = 1] −

Pr [Z(Real(A, ℓ, I, N,U)) = 1]|.

Hybrid 0. This hybrid implements the experiment Real(A, λ, ℓ, I, N,U). Clearly

Adv[0] = 0.

Hybrid 1. This hybrid modifies the above hybrid as follows: for all f(·, ·) oracle

queries A makes prior to receiving W, if the oracle query has the form (k, ·),

then abort the experiment and output ⊥.

We observe that k is random and not in A’s view prior to receiving W. Thus
5If the oracle has already been queried by A (and thus implicitly defined at this point) prior to

this stage of B’s operation, B aborts and outputs ⊥.

53

if A makes q queries, the probability of abort is at most q · 2−λ. This bounds

Adv[1]− Adv[0] ≤ q · 2−λ.

Hybrid 2. This hybrid modifies the above hybrid as follows: it randomly samples

the coefficients a0, ..., aM−1 that define P (·) and programs the random oracle

such that ∀i ∈ [0, N), fk(i) ≡ P (i) + Ii mod ℓ.

Let us implicitly define I = (I ′
0, . . . , I ′

M−1), and T \ I = (I ′
M , . . . , I ′

N−1), and

define the corresponding locations of these transactions in T as (j0, . . . , jN−1).

We make the following observations:

1. The distribution of (a0, ..., aM−1) is identical to that of the previous hy-

brid. This is because in Hybrid 1 it holds that (1) each fk(·) is uniformly

distributed in Fp, and (2) for a given I and ∀i ∈ [0, m) the value P (i) is

uniquely determined by fk(·), thus (3) each pair (fk(i), P (i)) is equally

probable.This implies that the distribution of these pairs is identical in

this hybrid and the previous hybrid. Because there is exactly one unique

polynomial for each set of M such points, and the points are uniformly dis-

tributed in FM
p , then the coefficients in Hybrid 1 must also be distributed

uniformly in FM
p . Thus the coefficients are distributed identically in the

two hybrids.

2. Similarly, each distinct tuple of coefficients (a0, ..., aM−1) uniquely defines

a distinct tuple P̂ = (P (j0), . . . , P (jM−1)). Because the coefficients are

sampled uniformly in this hybrid, then the tuple P̂ is distributed uniformly

in FM
p . Thus ∀i ∈ [0, M) it holds that fk(ji) ≡ P (ji) + I ′

ji
mod ℓ is uniform.

This is identical to Hybrid 1.

3. For every index i ∈ (jM , . . . , jN−1) (i.e., the indices not in I, every index I ′
ji

in Hybrid 1 is uniformly sampled from Zℓ. Provided that p is substantially

54

larger than ℓ (by a large factor) then each point fk(ji)is also distributed

(nearly) uniformly and indistinguishably from Hybrid 1.

As a consequence, all values provided to A and all oracle queries are distributed

identically to Hybrid 1. This bounds bounds Adv[2]− Adv[1] ≤ 1
p/ℓ

.

By summation over the hybrids we have that Adv[2] − Adv[0] ≤ q · 2−λ + 1
p/ℓ

, and

therefore if 1
p/ℓ

is negligible then B’s success probability is at most negligibly different

from that of A.

4.5 Duplicates and Alternative Distributions

The scheme we presented above serves as a useful first step. However, two major

problems remain. First, the transaction list T contains duplicates, which may reduce

the effective size of the anonymity set. Second, while our above technique works well

for uniform distributions, many desired applications may use alternate distributions.

We discuss both issues below.

4.5.1 Duplicates

It is important to note that the scheme above offers only a probabilistic guarantee

for the actual number of unique transactions in T . There is a chance that duplicate

transactions will occur in this list, resulting in a (unique) set of size less than N . We

discuss several ways to handle this.

4.5.1.1 Expected number of unique transactions

The simplest strategy is to accept the existence of duplicate transactions and instead

focus on the expected number of unique transactions for a transaction list of size N .

We can compute this with the following formula:

ℓ(1− (ℓ− 1
ℓ

)N)

55

If we use concrete numbers based on Monero with ℓ = 4, 000, 000, N = 1, 000, the

expected number of unique transactions is 999.88. Based on this, it seems the risk of

duplicate transactions is fairly low. However, we can do better if we truly want to

minimize this risk.

4.5.1.2 Resampling

To eliminate duplicates entirely, we can resample T until we obtain N unique trans-

actions. We can bound the number of attempts needed to minimize the chance of

obtaining duplicates to 2−50 with the following formula, where r is the number of

resamples.

r = −50 log(2)
log(1− ℓ!ℓ−N

(ℓ−N)!)

Using concrete numbers (ℓ = 4, 000, 000, N = 1, 000), then we find after 17

resamples the probability of duplicates is within this bound. This may have a modest

impact on the security reduction.

4.5.1.3 Oversampling

A final strategy is to actually sample N ′ values so that we obtain N unique transactions

with overwhelming probability. We do this by computing the required value of N ′

such that the probability of obtaining fewer than N unique transactions is bounded

by 2−50 using the following formula:

N ′ = (N + 1)−
log(250

√
2∗π

)
(log(1/ℓ))

Using concrete numbers (ℓ = 4, 000, 000, N = 1, 000), then we find that if we set

N ′ = 1, 004 we will obtain N unique transactions with overwhelming probability.

56

FMONERO(I = {I0, . . . , IM−1}, N)

1 : For i = 0 to N −M + 1 :
2 : Sample a random r ∈ Z253 .

3 : Compute Γi =
√

r

253 · ℓ.

4 : Construct sorted set {T0, . . . , TN−1} of Γ0, . . . , ΓN−M+1, I0, . . . , IM .

5 : return T = {T0, . . . , TN−1}

Figure 4-2. Monero sampling technique

4.5.2 Alternative Distributions

Some currencies, including Monero, use sample cover transaction outputs according

to a non-uniform distribution. This strategy is designed to produce cover traffic that

more closely resembles the distribution of real transaction outputs chosen by users.

At a basic level, Monero achieves this goal by using a distribution that is biased

against older transactions. Nominally this distribution is referred to as a triangular

distribution, however it has differences from a triangular distribution so that it has

further bias against older transactions. At a low level, Monero samples random

numbers uniformly, and then transforms them to the appropriate distribution. We

provide a outline of the Monero sampling technique in Figure 4-2.

Given this distribution, we will demonstrate how to apply the technique from

Figure 4-1 to this distribution. In the sampling method we modify the yi values to be

computed in the following way:

yi = fN,ℓ(k, ji)−
I2

i

ℓ2 · 2
53 mod ℓ

And compute the Ti values as follows:

Ti =
√

fN,ℓ(k, i)− P (i)
253 · ℓ mod ℓ

57

Similarly we modify the recover algorithm to compute Ti as above.

For distributions such as the one above which utilize uniform sampling in their

method, the conversion to our scheme is fairly straightforward. We simply replace

the uniform sampling step with our programmable hash function. However, this is

a special case and a more general strategy may be needed. In those situations we

can simply make use of Inverse Transform Sampling. The general idea is that for a

distribution X, with CDF FX , we simply do the following: If u is the result of our

uniform sampling technique, we solve for x s.t. FX(x) = u. This implies that using

our uniform sampling technique. we can construct an RSS for any distribution.

4.6 Integration with Specific Cryptocurrency Pro-
tocols

In this section we provide concrete examples of how this technique can be implemented

within specific cryptocurrencies. Here we focus on Monero (RingCT) and ByteCoin

(CryptoNote), due to the fact that these are currently the most widely-used mixing

cryptocurrencies and protocols. For each system we provide bandwidth cost estimates

for using our approach in that system, and compare with the cost of the approach

currently used by the system.

Remark: In the following analysis we focus only on the description of T as it appears

within a transaction. The analysis below omits all additional data that real currencies

embed in their transactions, including (notably) cryptographic proofs. In current

versions of mixing currencies, e.g., Monero, the size of these proofs grow linearly in

N , with Monero requiring an approximately 13KB transaction for M = 2, N = 10.

Future proof systems [14, 94, 100] offer bandwidth that grows logarithmically in N or

better. For example, Bulletproofs [14] may offer proof sizes under 3KB.

58

4.6.1 Overview of Protocols

We now describe the cryptocurrency protocols, and specifically the approach each uses

to encode T .

ByteCoin. Bytecoin [15] is one of the earliest mixing protocols, and is based on the

CryptoNote protocol [85]. ByteCoin uses a 1-out-of-N approach for constructing T .

If a transaction references multiple real transaction outputs, ByteCoin will sample

multiple T . Each T is differentially encoded within the transaction, i.e., for each

i ∈ [1, N) the transaction encodes Ii − Ii−1.6

Because CryptoNote does not hide payment values, cover traffic outputs are

sampled uniformly from the subset of previous transation outputs that have the same

currency value as the real transaction output being obscured. At the time of writing,

the largest such subset (for outputs of value 100 BCN) gives us ℓ = 2, 000, 000, and

we use this for our analysis. In our simulations below, we use an estimate for the size

of each ByteCoin description of T by computing the expected size of N uniformly-

sampled indices when differential encoding is applied. Note that in ByteCoin, values of

M > 1 are encoded using M distinct transaction lists T , one for each real transaction.

For simplicity, we compute our ByteCoin simulations only for M = 1.7

Monero. The Monero currency [67] is based on the newer RingCT protocol [70]. Like

ByteCoin, Monero uses a 1-out-of-N approach for constructing T (for values of M > 1

this results in M distinct lists T being sampled and encoded within the transaction).

Unlike CryptoNote, RingCT hides transaction values. Because transaction outputs

do not need to be bucketed by like value, this gives a larger available set of previous

transactions for a spender to use as cover traffic: at the time of writing, approximately
6These are encoded using a standard VLQ integer encoding. The low-order 7 bits of each byte

encode data, and the MSB acts as a flag indicating whether there are additional bytes to come.
7To evaluate the case where M > 1, one can simply take the measurements for M = 1 and

multiply the resulting description size by M . Of course this is somewhat unfair to Monero, given
that a more efficient version of the protocol could simply encode multiple real transactions within a
single set T .

59

ℓ = 4, 000, 000. Monero encodes the transaction indices of T using the same differential

encoding as ByteCoin.

As we discussed in §4.5, Monero samples cover traffic using an (approximate)

triangular distribution.8 For our simulations, we estimated the size of a Monero

encoding of T by running Monte Carlo simulations with 1, 000 trials and computing

the average size. Monero uses the same encoding process as ByteCoin for values of

M > 1, and so again we consider our results only for the case of M = 1.

4.6.2 Simulation Results

For this simulation we assume our RSS scheme uses a 128-bit key k and a 64-bit prime

p.9 Larger values for these parameters are possible, and will have a predictable impact

on our efficiency.

Figure 4-3 provides an clear visualization of how our scheme compares to the

existing approach used in Monero and ByteCoin. For both currencies, we plot how

varying N impacts the size in bits of the transaction list. Because the size of our RSS

compact description depends on M , we offer plots for several values of M .

Monero. As expected, the “current approach” Monero encoding grows linearly with

the number of transactions included in the transaction list. When only one legitimate

transaction is included (M = 1), we see that for N ≥ 9 our scheme produces a smaller

description than the current Monero approach. Even as we increase M to larger values

(2, 5), our scheme still outperforms Monero’s current approach at reasonably small

values of N .
8In practice, Monero’s sampling is more complicated. Monero uses two sets, one of “recent”

transaction outputs, and another of “all previous” transaction outputs, and ensures that at least 50%
of the resulting transactions are in the recent set. For simplicity of exposition, we simulate only the
simple process of sampling from the set of all previous transactions, although our results can easily
be adapted to Monero’s more complicated sampling process.

9Our results do not include the description of p or ℓ, as we assume that ℓ is indicated elsewhere
in the transaction (as it is in Monero and ByteCoin) and that p can be identified deterministically
given ℓ.

60

N RSS (M = 5) Monero ByteCoin
1,000 .06 kB 1.97 kB 5.94 kB
10,000 .06 kB 16.59 kB 55.4 kB
100,000 .06 kB 103.17 kB 497.86 kB

Table 4-I. Anonymity Costs of each encoding approach for large N

ByteCoin. The “current approach” of ByteCoin is similar in appearance to Monero,

although it differs subtly in the slope of the line. Again, our scheme proves superior to

ByteCoin’s current approach, though at somewhat smaller values of N in comparison

with Monero. Here, our scheme offers better cost for N ≥ 4. Additionally, increasing

M only has a small impact on the comparative efficiency of our scheme.

The reason for the steeper slope of the “current approach” in the case of ByteCoin

is due to the fact that the currency samples transactions from a uniform distribution.

This causes the transaction indices to be more evenly spaced, and thus all require

roughly the same number of bits. Since Monero has a preference for recent transactions,

many of the included transactions will be numerically close and will therefore produce

more compact differential encodings.

In both cases, our scheme outperforms current approaches at even relatively small

values of N . Additionally, innovations such as new proof techniques [94, 100] promise

dramatic increases to what is considered a practical value for N . To illustrate the

potential cost savings of our approach at larger values of N , we provide the following

concrete numbers (for an exemplary M = 5) in Table 4-I.

These bandwidth comparisons illustrate the potential for our scheme to offer

significant cost savings in transaction bandwidth. For comparison, the current average

total transaction size in Monero (including all proofs and metadata) as of this writing

is approximately 13kB [103].

61

Figure 4-3. Size of the transaction list T in bits for two popular cryptocurrencies, Monero
(top) and ByteCoin (bottom). “Current approach” indicates the representation of the
transaction list as a function of N (the number of transactions on the list). Note that
this value is (mosty) independent of M , so we do not illustrate different values of M .
“RSS” indicates the cost of the compact description W for different values of M , N . For
ByteCoin we use ℓ = 2, 000, 000 and for Monero we use ℓ = 4, 000, 000.

62

4.7 Other Applications

Beyond the significant improvements offered in the area of mixing cryptocurrencies,

RSS has the potential for extensions to a more diverse set of applications. Generally

speaking, the idea behind our scheme is to enable the insertion of desired values into

a distribution, without revealing where these insertions took place. In this section we

offer two examples of how to leverage RSS in other areas.

Anonymous Communication. The general concept of “mixing” is applicable to

many anonymous communications systems. In particular, Rivest et al. originally pro-

posed using ring signatures to add plausible deniability to email communications [82].

Just as the true input to a cryptocurrency transaction can be hidden by adding cover

inputs, the true sender of a message can be hidden by mixing with other identities. If

all user public keys are posted on some publicly accessible bulletin board, then we can

use RSS to efficiently sample this data according to some distribution. Thus, senders

would be able to construct large, yet compact, anonymity sets for themselves. Of

course, just as in the cryptocurrency case, auxiliary data such a cryptographic proof

will determine the total bandwidth overhead.

Client-Server Puzzles. A somewhat different application of RSS comes from Client-

Server Puzzles [49], which generally involves one party requiring another party to

complete some computationally intensive task. A common example is searching the

domain of some hash function for an output that satisfies a particular requirement.

RSS allows the puzzle creator more control over the search space. They might choose

to place the solution at a specific position or modify the difficulty of the puzzle

by changing the number of solutions present. Alternatively they could introduce

trapdoors into the puzzle, by placing a solution at an index that an honest client can

compute using their shared secrets.

This is far from a comprehensive list of the applications of RSS, and a future

63

extension of this work is to explore and enumerate the possibilities.

4.8 Related Work

4.8.1 Anonymity for cryptocurrencies

In addition to the anonymity protocols mentioned earlier, a separate line of works seek

to increase anonymity by Bitcoin by allowing users to interactively mix transactions

(e.g. CoinJoin [61], CoinShuffle, CoinSwap). A separate line of work [36, 40] examines

off-chain private payments.

4.8.2 Improved WI and ZK proof techniques

A different line of work examines the efficiency of privacy-preserving protocols such

as ring signatures, which are widely used in cryptocurrencies. For example, Dodis et

al. [26] proposed a constant-sized10 RSA-based ring signature (using an accumulator

due to Camenisch and Lysyanskaya [17]) in the random oracle model. Using a new

proof system in the discrete log setting, Groth and Kohlweiss recently proposed a

concretely efficient technique with log(n)-sized signatures [37] in the random oracle

model. Most recently, Malavolta and Schröder proposed an efficient constant-sized

group signature in the CRS model based on zkSNARKs [58].

4.8.3 Programmable hash functions

Many works use programmable hash functions. Hofheinz and Kiltz [41] offer a

canonical paper on the technique, although their proposals are not precisely suited to

our application. A vast number of works (including for example [9, 42, 99]) employ

these techniques. A noteworthy feature of some schemes similar to ours, (e.g., the
10For convenience we ignore the security parameter. In practice, such “constant-sized” schemes

have bandwidth O(λ).

64

Hohenberger-Waters signature [42]) is that those schemes require statistical properties

from underlying hash function f , and thus achieve security in the standard model

even when the hash function is a PRF with a non-secret seed. Developing an RSS in

the standard model is an interesting open problem.

4.9 Conclusion

In this work we described a new approach to describing transaction sets in deployed

mixing cryptocurrencies such as Monero and ByteCoin. We believe that our technique

is promising and can offer substantial bandwidth improvements when the total size of

the transaction set is large. Our work leaves several open questions. In particular, we

believe that there may be many other applications for this technique. Additionally,

we desire a scheme that offers security without relying on random oracles.

65

Chapter 5

Detecting Man-in-the-Middle via
Network Latency and Reverse
Turing Tests

5.1 Technical Overview

Our contributions in this work follow the ideas of previous forced latency protocols such

as Interlock [81] and Zooko’s “Defense Against Middleperson Attacks” protocol [101].

The basic protocol works by leveraging the idea of contributory key agreement. Such

protocols extend standard key agreement protocols with a strong guarantee that no

party can predict the outcome of the key exchange with an honest counterparty. Thus,

if a MitM is present that inserts itself into the key agreement protocol, it cannot cause

both honest parties to arrive at the same key. Thus, in the MitM case, the honest

parties will obtain mismatched keys.

The objective of a forced latency protocol is to exploit this key mismatch in order

to reveal the presence of an attacker. This is done by designing a protocol that forces

an MitM attacker to either (1) dramatically increase the latency of the communication

with a participant’s counterparty, or (2) take on the role of the counterparty, and thus

successfully emulate that party’s communications. The assumption that underlies

these protocols is that, in either case, the communicating parties will be able to

66

conclude that their conversation is being tampered with.

In the protocols described above, there are two aspects that are required in order

to achieve this goal. First, each party must ensure that each message is transmitted

under a unique key that is tightly bound to the party’s encryption key. Next, is the

forced latency piece: parties do not transmit a message for immediate consumption;

instead, they transmit a committing encryption of the message and then, after waiting

for some set amount of time, transmit an opening key for this ciphertext. This poses

a challenge for a passive attacker, who must decrypt and re-encrypt the message

when relaying between parties, resulting in a doubling of the latency. Of course, an

active attacker can simply take on the role of the counterparty — and need not relay

the real counterparty’s messages — but this requires the attacker to emulate the

counterparty’s message style prior to seeing their messages. As shown in figures 5-1

and 5-2, unless the MitM wants to increase the latency noticeably it must either reveal

the key mismatch or forge new messages and commitments.

While the basic idea behind forced latency protocols is fairly elegant and simple,

we found that formalizing these ideals led to some non-trivial technical problems

The acknowledgement problem. One of the most common components not fully

fleshed out by existing protocols is how a party actually detects the MitM’s presence.

Informally, it is assumed that if Party A started the protocol, then the receipt of

Party B’s message will be used to compute latency. However, this raises the question

of what this measured latency is compared against. Additionally, for the most robust

definition we would also like to know whether Party B actually received our messages

and when they were received. However, these acknowledgements cannot be sent over

in the clear as that would allow the MitM to tamper with them. Thus, the forced

latency protocol must be modified so that these acknowledgements can also be sent

over in a protected manner.

67

Alice Bob

Key Exchange
Com(Ma∥Ka, ra)

δ

Ma, ra

Com(Mb∥Kb, rb)

δ

Mb, rb

msc Basic Forced Latency Protocol

Figure 5-1. Illustration of basic forced latency protocol

Alice Mallory Bob

Key Exchange
Com(Ma||Ka, ra)

δ

Ma, ra

Com(Ma||Kb, ra)

δ

Ma, ra

Com(Mb||Kb, rb)

δ

Mb, rb

Com(Mb||Ka, rb)

δ

Mb, rb

msc Basic Forced Latency Protocol

Figure 5-2. Illustration of forced latency protocol with (passive) MitM present

68

Forgery. A third option an MitM has outside of adding more latency or doing nothing

is forging messages. Some existing protocols attempt to prevent this by introducing the

idea of "semantic irregularities". This is the idea that the messages being exchanged

are too high entropy for the MitM to forge without being exposed. However, there

was never a formal definition introduced for this notion nor a clear idea on how to

achieve this property. This raises the question of how to capture this notion in a way

that is compatible with provable security.

Deepfakes and Emulated Human Behavior. Beyond the limitations already

mentioned for text based human authentication systems, the recent rise of LLMs such

as chatGPT [71] have further complicated the problem of identifying a human from

text conversation alone. This problem continues into the audio/video realm as well

with the rise of deepfakes [60]. The development of these sophisticated models for

emulating human behavior have led to some asking whether the turing test is even

relevant anymore [10].

The key threats of these models are the ability to produce full machine produced

forgeries of human behavior as well as to allow for human adversaries to better imitate

other parties.

Our approach in this work is to leverage the natural capabilities of human beings

to “authenticate” human beings to produce a strong authentication protocol for

cryptographic interactions. Naturally, this approach implicitly depends on the ability

of human beings to distinguish true interactions from “deepfake” interactions.

We note that while deepfakes continue to get more advanced, in practice these work

best on videos that are mainly static [65, 92] and are not well suited to interactive

settings [10]. In the near term, this indicates that for our setting of video calls, these

techniques are still detectable.

However, with the rapid development of deepfake technology, it is important to

69

recognize that these imitations will eventually reach a level where the forgery is not

obvious to the human eye. At the same time, our capabilities to detect these types of

emulations of human behavior are also rapidly improving, both in the text [66] and

deepfake [52, 60, 102, 104] settings. Thus in the longer term, humans with additional

detection tools may be able to rule out such attacks.

To account for this, in our formalization of human authentication we include

the possibility of humans leveraging these tools to detect forged video (See 5.2.1).

Ultimately our system cannot survive an environment in which humans cannot au-

thenticate other human beings. We view our work as an investigation into what is

possible in today’s environment.

Improving the “Real-Time"-ness of the Protocol. Forced latency protocols

marry two somewhat contrary notions. The latency measuring properties of these

protocols necessitate that the protocol is used for real-time communication. However,

the protocol requires the addition of artificial delays. As a result, most existing

protocols are turn-based. Parties take turns sending messages and can only reply when

it is their turn to do so. This is not a common pattern for real-time communication,

so it raises the question of whether a forced latency can allow for simultaneous

communication between parties. For example, most real-time communication protocols

tend to have simultaneous streams of audio or video from both parties. It stands

to reason that the closer the protocol is to an in-person conversation the easier it

will be to detect irregularities. While having some delay in a conversation may cause

annoyance, we believe it to still be superior to having to wait your turn to talk. In

a sense, turn-based communication is simply real-time communication with severe

latency already.

Party Synchronicity. In formalizing these protocols an important question that

arose is how to prevent the parties from falling out of sync or having differing

70

information about the presence of an MitM. Existing work generally only had one

party learn of the presence of the MitM at a time, so its possible that a party doesn’t

realize it is vulnerable. Furthermore, the risk of the MitM pushing the parties out

of sync to alter their latency measurements is not formally analyzed. Ideally, the

adversary should not be able to act without both parties detecting it immediately.

Amount of delay. The exact process of choosing a latency was also not well

specified. Selecting the added latency δ appropriately is critical to the functioning

of our protocols, it must be large enough that the presence of the delay is clearly

detectable even against the nosiness of real networks. As the parameter δ cannot be

set dynamically as that may allow the MitM to manipulate it to hide their presence,

we need to capture a picture of what expected latencies between different regions are

like. MitM attacks are infrequent and should not be able to significantly affect these

measurements of expected latency. Then in practice, we can map an appropriate δ

based on the expected latency. That way we can ensure a suitable δ is chosen. We

discuss this in section 5.5.4 in our examination of TURN servers in different regions

and the associated latencies. These results provide some indication of a future method

of heuristically selecting the latency based on location in a way that is still robust to

attempts by the adversary to manipulate the value.

For our proof of concept, we selected a value of δ which we found in practice would

be the dominant contribution to latency in most circumstances. We note that if users

are willing to tolerate latency beyond the normally acceptable threshold (>400ms)1

an applicable fixed value of δ can always be found.

In our experiments detailed in section 5.5.2 we note that once the average latency

in a 10 second window is larger than 2*δ, we assume the presence of an MitM. As we

discussed, δ is chosen so that the presence of forced latency delay is clearly detectable.
1Cisco found that a one-way delay of 200ms was the threshold before quality noticeably declines [77].

We extrapolate from this to arrive at a threshold for roundtrip delay

71

Depending on how strict of a MitM detection strategy is desired, detection could

alternatively be based on majority vote of multiple measurement windows or as soon

as any measured latency is 2*δ.

Resolving these issues required significant adjustments to the design of a forced

latency protocol which we discuss in more depth in section 5.3. Taken all together we

arrive at LATENT, a realistic, formally defined and proven Forced Latency protocol.

5.2 Definitions

Our security definition is motivated by the authenticated and confidential channel

establishment (ACCE) protocol from [44]. This protocol provides a powerful frame-

work for evaluating the security of an authenticated key exchange. However, some

modifications are necessary since the original ACCE definition was motivated with

TLS in mind and we are dealing with a stronger adversary and an unauthenticated key

exchange. We will refer to our definition as human authenticated secure communication

(HASC).

5.2.1 The Turing Test

A goal of this paper is to provide a formal representation of the use of ‘human

authentication’. Informally, this refers to leveraging an actual human user, rather than

just their system when executing a protocol.

As the rest of these protocols can be made to sit on firm theoretical bases, our

objective is to encapsulate this informal idea into a single primitive. That way, just

as other building blocks can reduce to cryptographic assumptions, the human aspect

can too be reduced to some hard assumption. This modularity would also simplify

replacing this component if an assumption is found to be faulty without having to

rework the rest of the protocol.

72

Since these protocols are leveraging humans to perform tasks that are presumed

difficult for computers to do, it makes sense to tie this primitive to Hard AI problems.

Breaking this primitive should be just as hard as being able to solve such a problem.

The gold standard of such a problem is the concept of the Turing Test. The Turing

Test is an interactive protocol between a human challenger and a potentially non

human adversary. The human can send as many challenges as it wishes and once it is

satisfied it will output accept or reject. Only a human adversary should result in an

accept.

To account for deepfakes and other advances in human emulation, we augment the

basic Turing Test to allow for humans to make use of additional resources. We provide

the human challenger optional access to a detection tool that can take messages from

the adversary and check whether they were produced by an ML model. Such tools

are available [52] and hamper the use of algorithmic attempts to imitate a human.

Critically, the final decision still comes down to the human, but these tools can help

inform their decision. An AI beyond the detection capabilities of a human with these

resources would indicate that humans are no longer able to virtually authenticate each

other. Any algorithmic turing machine adversary should only succeed with negligible

probability.

In formalizing the game, we had the challenge of keeping the overall properties of

the Turing Test from being too specific to our setting, while still exposing the correct

interface needed for our security proofs.

5.2.1.1 Formal Definition

We formalize the idea of a Turing Test for authentication as follows. Let H be a

human participant who will communicate with a potentially nonhuman adversary A.

To setup the game H receives some auxiliary system parameters pp which detail any

necessary context for the game. They also have oracle access to a detection machine

73

D. The protocol proceeds with H and A exchange messages. We denote the i-th

message sent by party P ∈ {H,A} as mP
i . The transcript < H,A > (t)→ τ at time

t is the tuple ({mH
i }

p
i=1, {mA

i }
q
i=1) where p (resp. q) is the number of messages sent

by party H (resp. A) by time t. H can query D on any message it receives and will

receive a bit b that is 1 if the message was the output of an ML model and 0 otherwise.

On any transcript τ , H(τ) will output d ∈ {accept, reject, undecided}. We define

the decision time td and decision transcript τd such that τd is the transcript at time td

and H(τd) outputs either accept or reject.

Definition 5.1. We say that a Turing Test is (t, ϵ)-authenticating if for any nonhuman

A∗ there exists a negligible function ν(·) such that it holds that

Pr
[
accept = H(τ)

⏐⏐⏐ τ ←< H,A > (t)
]
⩽ ν(·)

Where a minimum of ϵ messages did not originate from a human participant.

5.2.2 HASC Protocols

In this section we provide an overview of HASC protocols and their security. First we

describe the model at a high level and then detail the formal model and definitions.

5.2.2.1 Overview

An HASC protocol is a protocol executed between two parties. The protocol consists

of three phases, called the ‘pre-accept’ phase, ‘auth’ phase, and the ‘post-accept’

phase.

Pre-accept phase. In this phase a ‘handshake protocol’ is executed and a session

key k is established. This phase ends, when both communication partners reach an

accept-state (i.e. Λpre = ‘accept’).

Auth phase. In this phase an ‘a posteriori’ authentication protocol is executed

74

through the invocation of an instance of the Turing test. The exact behavior of the

human challenger will be a function of the protocol. This phase ends, when both

communication partners reach an auth-state (i.e. Λauth = ‘accept’).

Post-accept phase. This phase is entered, when both communication partners reach

an auth-state. In this phase data will be transmitted, encrypted and authenticated

with key k.

At a high level, these phases capture the differing states of security provided

to the participants in an a posteriori authenticated key agreement protocol. First,

participants negotiate a key and use it for encryption. At this stage the key is

considered to be insecure. Then, they perform some additional protocol to verify

the identity of their fellow participant. If the Authentication succeeds, then the key

is considered to be secure. Finally, this key can be used to provide a confidential

communication challenge.

In order to model this setting, a somewhat involved execution environment must

be defined. This environment is meant to capture the capabilities of an Adversary.

The Adversary is specified to facilitate all communication in the environment so to

capture the large extent of its control over all aspect of the protocol. At the high level,

the adversary interacts with protocol participants in the following ways:

Send queries. These queries deliver a message to a participant and return a

response. Using these queries allows an adversary to carry out communication between

participants as well as inject its own messages.

Corrupt queries. The adversary is additionally able to receive the session key

or long term keys of parties. This captures the idea of forward secrecy and post

compromise security.

Encryption queries. Once the sessions keys are established and the Post-accept

phase begins, an adversary must use these queries to transfer messages between parties.

75

For a HASC protocol to be secure, we want to require either that the Auth phase

fails or that messages in the post-accept phase are hidden to the adversary in the

event that an adversary interferes in the pre-accept phase. That is to say that we

should be able to condition on the consistency of messages sent and received in the

pre-accept phase and show that in either case there is a challenge the adversary will

fail at.

We do this by separating the security into a pair of games. There is the Authenti-

cation game where an adversary must interfere during the session key establishment

in the pre-accept phase but not have the participants detect the interference during

the auth phase. Then there is the Encryption Game, where session keys should be

shown to be secure if the session keys are honestly established.

Clearly, if an adversary cannot win at either game we will have an authenticated

channel by the end of the protocol.

5.2.2.2 Execution Environment

5.2.2.2.1 Pre-accept Phase Consider a set of parties {P1, ..., Pℓ}, ℓ ∈ N, where

each party Pi ∈ {P1, ..., Pℓ} is a (potential) protocol participant and has a long-term

key pair (pki, ski). (Note that unlike the standard AKE model [2], we do not assume

that these public keys are known to the other parties.) (Actually, the public keys

should be provided by a potentially malicious party) To model several sequential (We

feel its a natural assumption that a human can only be party to one execution at

a time) of the protocol, each party Pi is modeled by a collection of oracles π1
i , ...πd

i

for d ∈ N and a human Hi. Each oracle πs
i represents a process that executes one

single instance of the protocol. All oracles π1
i , ...πd

i representing party Pi have access

to the same long-term key pair (pki, ski) of Pi. Moreover, each oracle πs
i maintains as

internal state the following variables:

• Λpre ∈ {accept, reject}.

76

• k ∈ K, where K is the keyspace of the protocol.

• Π ∈ {1, ..., ℓ} containing the intended communication partner, i.e., an index

j that points to a public key pkj used to perform authentication within the

protocol execution.

• Variable ρ ∈ {Initiator, Responder}.

• Some additional temporary state variable st (which may, for instance, be used

to store ephemeral Diffie-Hellman exponents or the transcript of all messages

sent/received during the Handshake).

• bit bs
i

$← {0, 1}, chosen at random at the beginning of the game.

The internal state of each oracle is initialized to (Λpre, k, Π, ρ, st) = (∅, ∅, ∅, ∅, ∅),

where V = ∅ denotes that variable V is undefined. Furthermore, we will always

assume (for simplicity) that k = ∅ if an oracle has not reached accept-state(yet),

and contains the computed key if an oracle is in accept-state, so that we have

k ̸= ∅ ⇐⇒ Λ = ‘accept′.

An adversary may interact with these oracles by issuing the following queries:

• Sendpre(πs
i , m): The adversary can use this query to send message m to oracle

πs
i . The oracle will respond according to the protocol specification, depending

on its internal state, except that it replies with an error symbol ⊥ if oracle πs
i

has state Λpre = ‘accept′. (Send-queries in an accept-state are handled by

the Sendauth and Decrypt-queries below).

If the attacker asks the first Send-query to oracle πs
i , the the oracle checks

whether m = ⊤ consists of a special ‘initialization’ symbol ⊤. If true, then

it sets its internal variable ρ := Initiator and responds with the first protocol

77

message. Otherwise it sets ρ := Responder and responds as specified in the

protocol.

The variables Λ, k, Π, st are also set after a Send-query. When and how depends

on the considered protocol.

• Reveal(πs
i): Oracle πs

i responds to a Reveal-query with the contents of variable

k. Note that we have k ̸= ∅ if and only if Λ = ‘accept′.

• Corrupt(Pi): Oracle π1
i responds with the long-term secret key ski of party Pi.

If Corrupt(Pi) is the τ -th query issued by A, then we say that Pi is τ -corrupted.

For parties that are not corrupted we define τ :=∞.

5.2.2.2.2 Auth phase For the auth phase each oracle πs
i keeps an addition variable

Λauth. During this phase, the human Hi representing party Pi conducts a Turing test

with H∗
Π, to assess whether it is communicating with the human HΠ representing

its intended partner PΠ. The conversation transcript τ can be extracted from the

messages sent and received in this phase. This phase runs for time T . At the end

of the phase, if < Hi,H∗
Π > (T) = accept then Λauth is set to auth, and is set to

rejectotherwise. In this phase the adversary interacts with oracles using the following

query:

• Sendauth(πs
i , m): The adversary can use this query to send message m to oracle

πs
i . The oracle will respond according to the protocol specification, depending

on its internal state, except that it replies with an error symbol ⊥ if oracle πs
i

has state Λauth = ‘auth′. Messages exchanged in this phase can be extracted

into a Turing Test transcript according to the protocol transcript. (Send-queries

in an auth-state are handled by the Decrypt-query below).

78

5.2.2.2.3 Post-accept phase Moreover, for the post-accept phase each oracle πs
i

keeps additional variables (us
i , vs

i , Cs
i , θs

i , TSs
i). Variables us

i , vs
i are counters, which are

initialized to (us
i , vs

i) := (0, 0). To simplify our notion we additionally define u0
0 := (0, 0).

Variable Cs
i is a list of ciphertexts, which initially is empty. We write Cs

i [u] to denote

the u-th entry of Cs
i . Variable θs

i stores a pair of indices θs
i ∈ [ℓ] ∪ {0} × [d] ∪ {0}. If

oracle πs
i accepts having a matching conversation to some other oracle πt

j, then θs
i is

set to θs
i := (j, t). Otherwise it is set to θs

i := (0, 0). TSs
i is a monotonically increasing

list of timestamps that is updated with each Decrypt-query. We write TS[u] to denote

the u-th entry of TSs
i and TSs

i .prev to denote the last item of the list.

We will furthermore assume that the key k consists of two different keys k =

(kρ
enc, kρ

dec) for encryption and decryption. Their order depends on the role ρ ∈

{Initiator, Responder} of oracle πs
i .

An adversary may interact with these oracles by issuing the following queries:

• Encrypt(πs
i , m0, m1, len, H): This query takes two messages m0 and m1, length

parameter len, and header data H. If Λ ̸= ‘accept′ then πs
i returns ⊥.

Otherwise, it proceeds as depicted in figure 5-3, depending on the random bit

bs
i

$← {0, 1} sampled by πs
i at the beginning of the game and the internal state

variables of πs
i .

• Decrypt(πs
i , C, H, ts): This query takes as input a ciphertext C, header data H,

and a message timestamp t. If πs
i has Λ ̸= ‘accept′ then πs

i returns ⊥. Otherwise

it proceeds as depicted in figure 5-3. In addition to the values returned described

in the figure, during a Decrypt-query the oracle will also respond according to its

protocol specification and update its state variables. This includes the possibility

of moving to a reject-stateand aborting the protocol.

Note. A Send-query refers to Sendpre if the oracle is in the Pre-accept phase and

Decrypt-query if it is in the Post-accept phase.

79

Encrypt(πs
i , m0, m1, len, H):

(C(0), st(0)
e) $← StE.Enc(kρ

enc, len, H, m0, ste)

(C(1), st(1)
e) $← StE.Enc(kρ

enc, len, H, m1, ste)
If C(0) =⊥ or C(1) =⊥ then return ⊥
us

i := us
i + 1

(Cs
i [ui

s], ste) := (Cbs
i), st

(bs
i)

e)
Return Cs

i [ui
s]

Decrypt(πs
i , C, H, ts):

If ts < TSS
i .prev, then return ⊥

TSs
i .append(ts)

(j, t) := θs
i

vs
i := vs

i + 1If bs
i = 0, then return ⊥

(m, std) = StE.Dec(kρ
dec, H, C, std)

If vs
i > ut

j or C ̸= Ct
j [vs

i], then return m

Return ⊥

Figure 5-3. Encrypt and Decrypt oracles in the HASC security experiment

80

The Send-query enables the adversary to initiate and run an arbitrary number

of protocol instances, sequentially, and provides full control over the communication

between all parties. The Reveal-query may be used to learn the session keys used in

previous protocol executions. The Corrupt-query allows the attacker to learn ski of

party Pi, it may for instance be used by A to impersonate Pi.

5.2.2.3 Security Defintion

We borrow from [2] the notion of matching conversations in order to define correctness

and security of a HASC protocol precisely.

We denote with Ti,s the sequence that consists of all messages sent and received by

πs
i in chronological order (not including the initialization-symbol ⊤). We also say that

Ti,s is the transcript of πs
i . For two transcripts Ti,s and Tj,t, we say that Ti,s is a prefix

of Tj,t, if Ti,s contains at least one message, and the messages in Ti,s are identical to

and in the same order as the first |Ti,s| messages of Tj,t.

Definition 5.2 (Matching Conversations). We can say πs
i has a matching conversation

to πt
j, if

• Tj,t is a prefix of Ti,s and πs
i has sent the last message(s), or

• Ti,s = Tj,t and πt
j has sent the last message(s).

The security of a HASC protocol is defined by requiring that either all data is

transmitted over an authenticated and confidential channel or parties will be able to

recognize if this is not the case.

This notion is captured by a game, played between an adversary A and a Challenger

C. The challenger implements the collection of oracles {πs
i : i ∈ [ℓ], s ∈ [d]}. At the

beginning of the game, the challenger generates ℓ long-term key pairs (pki, ski) for all

i ∈ [ℓ]. The adversary receives the public keys pk1, ..., pkℓ as input. Now the adversary

81

may start issuing Sendpre,Sendauth,Reveal, Corrupt, Encrypt, Decrypt queries. Finally,

the adversary outputs a triple (i, s, b′) and terminates.

Definition 5.3. Assume a "benign" adversary A, which picks two arbitrary oracles

πs
i and πt

j and performs a sequence of Send-queries by faithfully forwarding all the

messages between πs
i and πt

j for the Pre-accept, Auth, and Post-accept phases. Let

ks
i = (kInitiator

enc , kInitiator
dec) denote the key computed by πs

i and let ks
i = (kResponder

enc , kResponder
dec)

denote the key computed by πt
j. We say that a HASC protocol is correct, if for this

benign adversary and any oracles πs
i and πt

j it always holds that

1. Both oracles have Λpre = accept.

2. Both oracles have Λauth = auth.

3. ks
i = kt

j ∈ K

Furthermore, we require that for all messages m ∈ {0, 1}∗, lengths field len ∈ N that

are valid for m, roles ρ ∈

{Initiator, Responder}, keys k = (kρ
enc, kρ

dec), headers H ∈ {0, 1}∗, and encryption/de-

cryption states ste, std ∈ {0, 1}∗ holds that StE.Dec(kρ
dec, H, StE.Enc(kρ

enc, len, H, m,

ste), std) = m.

Definition 5.4. We say an adversary (t, ϵ)− breaks an HASC protocol, if A runs in

time t, and at least one of the following two conditions holds:

1. When A terminates, then with probability at least ϵ there exists oracles πs
i , πt

j

such that:

• πs
i , πt

j ’accept’ (Λpre = accept) with each other as their intended partner.

• πs
i , πt

j do not have a matching conversation with each other at the end of

the Accept phase.

• Either πs
i or πt

j have Λpre = auth at the end of the Auth phase.

82

If πs
i or πt

j authenticate in the above sense, we say that the oracle authenticates

maliciously.

2. when A terminates and outputs a triple (i, s, b′) the following conditions holds:

• There exists πt
j such that πs

i has a matching conversation with πt
j, πs

i and

πt
j are both in accept-state at time t

Then the probability that b′ equals bs
i is bounded by

|Pr[bs
i = b′]− 1/2| ≥ ϵ

. If an adversary A outputs (i, s, b′) such that b′ = bs
i and the above conditions

are met, then we say that A answers the encryption-challenge correctly.

We say a protocol is (t, ϵ)− secure if it is correct and there exists no adversary

that (t, ϵ)− breaks it.

5.2.2.4 Relation to ACCE security definition

Note that an HASC protocol can be constructed in a three-step approach.

1. (CKA part) First an unauthenticated contributory key agreement (CKA) pro-

tocol is executed. This protocol makes no guarantees beyond providing an

unpredictable session key so long as one honest party was involved.

2. (Authentication part) The session key is then used in a protocol’s a posteriori

(Human) authentication stage. This stage may overlap with the beginning of the

protocol. This stage guarantees the authenticity of the communication partner.

3. (Symmetric part) At this point a new session key can be derived or the session

key can be continued to be used in a symmetric encryption scheme providing

integrity and confidentiality.

83

This approach maintains the original modularity of the ACCE definition, with the

change of moving authentication to an additional phase that occurs after session key

establishment.

Similar to ACCE, we argue that since the purpose of these protocols is to establish

an authenticated confidential channel, indistinguishability and non-malleability of

encrypted messages rather than full indistinguishability of session keys is sufficient.

5.3 LATENT Protocol

We now describe the LATENT protocol, our construction for a secure HASC scheme.

5.3.1 Network Model

The network model we assume is an unreliable channel such as UDP. While our

protocols can certainly be implemented in combination with some form of packet

retransmission, use of TCP specifically (using a standard TCP stack) will induce

confounding effects due to the fact that applications do not receive fine-grained data

on packet latency. This data is critical to implementing a latency-based security

protocol. While, it is possible for channels with reliable delivery to provide this data

(e.g. through TCP with kernel instrumentation or higher-level reliable protocol such

as QUIC [56]), this would move us away from how video communications happen in

practice. Additionally, we assume that the adversary has the ability to interfere with

any existing reliability mechanisms in the network.

5.3.2 Design

The core contribution of our paper is our protocol for a posteriori authenticated key

agreement. This formalizes the ideas laid out in prior MitM detection and forced

latency works [22, 81, 88, 101]. In this section we will describe the details of our proto-

col, Latency-based Authentication Through Encrypted Network Telecommunications

84

(LATENT).

Acknowledgements. LATENT aims to address the technical problems that ex-

isting forced latency protocols face. First and foremost, in order to ensure that a

party is aware of the receipt of its messages and the time of receipt we introduce

acknowledgements. These acknowledgements are embedded in future committed

packets so they are opaque to adversaries and cannot be tampered with. We make

use of two acknowledgements per packet sent, one that is sent back immediately upon

receipt to allow for measuring that baseline latency for sending and receiving packets

(type 1). The second acknowledgement does not get sent back until its associated

packet has been opened (type 2). This allows for measuring the actual latency for the

communication with the protocol’s artificial latency factored in.

The acknowledgements are in the form of random challenge strings. The type 1

challenge is sent in the clear so that the receiving party can immediately send it back.

Due to the use of an AEAD, if the challenge was modified the recipient would detect

it. While an MitM could read this challenge in transit, that poses little risk. It could

send the acknowledgement of the challenge back earlier than the receiving party, but

that would simply make the measured baseline latency appear lower. This would only

make it easier to detect the increased latency caused by the MitM’s presence. Since all

acknowledgements are sent back within commitments, the MitM is unable to tamper

with these in transit surreptitiously.

Human Authentication. The general intuition for LATENT comes from the idea

that human’s latent ability to authenticate each other operates as shared secret when

no other pre-shared secret exists. Since no one aside from the honest communicating

parties should be able to produce the transcript of an authenticating conversation,

the messages involved in this conversation are unknown and unpredictable to an

eavesdropper. Thus, an adversary should not be able to produce sensible responses

until it sees these messages. As we will see in section 5.4, LATENT is designed so

85

that the security of the scheme reduces to the hardness of the Turing Test. Thus,

successfully forging a significant amount of messages in LATENT would imply that

an adversary is able to reliably win the Turing Test defined in the previous section,

which is assumed to be a hard problem.

Real-time Synchronicity. LATENT is also designed so that each party can perform

the authentication procedure simultaneously. This allows for both the ability for parties

to independently assess whether a MitM is present as well as send and receive messages

at the same time. This reduces the need of both parties staying in sync and also opens

up a broader set of choices for the communication protocol underlying LATENT such

as real-time audio or video.

Amount of Delay. LATENT additionally requires that the amount of forced latency

be a fixed parameter of the protocol. The security of a forced latency protocol relies

on detecting a substantial increase in latency if a MitM is present. However, given

the lack of prior shared secrets it does not seem possible to allow this value to be

various without giving the MitM the ability to influence this parameter. If the latency

parameter is compromised, the MitM can adjust the value to hide its presence in all

cases.

5.3.3 Overview

The high level operation of the protocol is as follows. While there is a pre-accept phase

where a session key is established, we will focus on what happens during the auth

and post-accept phases as that is where the core operation of LATENT occurs. The

protocol involves two parties asynchronously sending packets to each other. Unlike

prior work, this enables for simultaneous communication of the two parties. For a

given packet a party wishes to send, it first sends a commitment to the message

in the form of a ciphertext of the packet under a key it produces ephemerally as a

function of the session key. After a specified delay (we model this delay as a specific

86

number of packets with the assumption that packets are being sent out from a party

at regular intervals2), it sends another packet that contains an opening that allows the

packet to be read. It will also obtain at some point an encrypted acknowledgement

that the other party received this packet and an opening that allows it to view this

acknowledgment. This allows the party to compute the channel latency and check

whether it matches the expected delay.

Our claim, which we will later prove, is that any active adversary on this connection

will be forced to significantly increase the latency of packets in order to hide its presence.

5.3.4 Building Blocks

In order to build LATENT, we assume the following cryptographic functionalities:

• DH : A Diffie-Hellman contributory3 key exchange protocol. At the end of the

protocol each party will arrive at a key.

• KDF(K, n)→ k : A Key Derivation Algorithm that takes in a long term key K

and a nonce n and returns a key k. We assume this KDF meets the definition

of a PRF as well.

• An AEAD scheme consisting of the tuple (KeyGen, Enc, Dec) that are defined as

follows:

– KeyGen(1n, K)→ k, n: Takes in as input 1n where n is the security param-

eter and a long term key K. Then it samples n
$← {0, 1}ℓ, where ℓ is the

length of nonces for this AEAD scheme. It returns k := KDF(K, n) and n.

– Enc(k, M, D)→ C: Takes as input a key k, a plaintext M , additional data

to authenticate D and returns a ciphertext C.
2We can constrain this as part of the system operation
3Contributory key exchange requires that neither party can force the derived key to be a particular

value.

87

– Dec(k, C, D) → M ∈ {⊥} ∪ {0, 1}∗: Takes in a key k, a ciphertext C,

and additional data to authenticate D and if the ciphertext was validly

generated under k it returns the plaintext. Otherwise it returns ⊥.

We assume this AEAD is secure in the definition of Rogaway [83].

5.3.5 Construction

The forced latency features and asynchronous nature of LATENT make the protocol

fairly complex with many important pieces to discuss. However, at its core, the

protocol consists of two parties that negotiate a key and then exchange packets

within an encrypted channel. The number of packets to delay by, δ, is a fixed system

parameter.

Pre-accept phase. In this phase a DH is executed between the parties and each

party P arrives at a session key KP . If the parties are honest then this key will be

the same. (i.e. Λ = ‘accept’).

Auth phase. In this phase, each party will execute the LATENT protocol for each

packet they wish to send. All data sent over this phase is encrypted with the parties

session key KP . Based on the LATENT protocol’s detection of an MitM as well as

the contents of the packets exchanged, each party will decide on an auth-state. This

phase ends when both communication partners reach an auth-state (i.e. Λauth =

‘accept’).

Post-accept phase. This phase is entered, when both communication partners

reach an auth-state. In this phase, each party will continue to execute the LATENT

protocol for each packet they wish to send; however, at this point the channel is

assumed to be authenicated and secure. All data sent over this phase is encrypted

with the parties session key KP .

During the Auth and Post-accept phase, each party P runs the procedures Send and

88

Receive. This procedures will share state, but are guaranteed to only run sequentially.

• Send(mi, t)→ Lρ
i : Takes in a message mi and a timestamp for this message t

and returns a LATENT packet Lρ
i . This method encrypts the message under a

one-time packet key and generates a pair of challenges for determining baseline

(type 1) and overall latency (type 2). It packs the messages and challenges

alongside acknowledgments for the most recent challenges received and the nonce

to compute the (i− δ)th packet key into the returned LATENT packet Lρ
i . The

time the message is sent is also recorded so that latency can be computed.

• Receive(Lρ̄
j , t)→ mj−δ : Takes in a LATENT packet Lρ̄

j and a timestamp t and

returns a message mj−δ. This message processes a received LATENT packet by

using the included nonce to decrypt the (j − δ)th packet that was received. The

included challenges are stored so they can be used to acknowledge the received

packet. The time t of packets being acknowledged is recorded so baseline and

overall latency can be recorded.

The full details of these methods are included in figure 5-4.

The communicating parties call these methods as they exchange packets. As they

do so, the following state variables are maintained:

• i: the current packet number. Starts at 0 and is incremented with each new

packet to send.

• N⃗ : A list of packet nonces. These will be used to commit to and open packets.

We say that for i < 0, Ni is the i-th element of N⃗ .

• A⃗: A list packet challenge pairs. Ai,τ denotes challenge type τ ∈ {1, 2} for the

i-th packet sent.

89

Send(mi, t):

kρ
i , ni ← KeyGen(1n, K)

aρ
i,1, aρ

i,2
$← {0, 1}w

Ai,1 := aρ
i,1

Ai,2 := aρ
i,2

ACK1, aρ̄
ACK1,1 := ⃗ACK1.pop()

ACK2, aρ̄
ACK2,2 := ⃗ACK2.pop()

nρ
i−δ := Ni−δ

M = aρ̄
ACK1,1∥ACK1∥mi∥aρ

i,2∥a
ρ̄
ACK2,2∥ACK2

D = i∥aρ
i,1∥ni−δ

C := Enc(kρ
i , M, D)

Lρ
i = C∥D

Ni := nρ
i

i := i + 1
Ti,1 := t

Return Lρ
i

Receive(Lρ̄
j , t):

C, D = Lρ̄
j

j, aρ̄
j,1, nρ̄

j−δ := D
⃗ACK1.push((j, aρ̄

j,1))
Cj := (j, C, D)
If j − δ >= 0 AND nρ̄

j−δ ̸=⊥

kρ̄
j−δ ← KDF(K, nj−δ)

(j − δ, C, D) := Cj−δ

M := Dec(kρ̄
j−δ, C, D)

If M =⊥ then return ⊥
aρ

x,1, x, mj−δ, aρ̄
j−δ,2, aρ

y,2, y := M
⃗ACK2.push((j − δ, aρ̄

j−δ,2))
If Ax,1 = aρ

x,1 then Tx,2 := t

If Ay,2 = aρ
y,2 then Ty,3 := t

Return mj−δ

Return ⊥

Figure 5-4. Methods for sending and receiving packets

90

• T⃗ : A list of timestamps recording when a packet is sent and acknowledgement

is received. Ti,z denotes timestamps for the i-th packet sent. z ∈ {1, 2, 3} where

z = 1 is the time packet is sent, z = 2 is the time first acknowledgement is

received, z = 3 is the time the second acknowledgement is received.

• ⃗ACKτ : A stack of challenges received of type τ . ⃗ACKτ .pop() returns the most

recent challenge received. ⃗ACKτ .push(j, aρ̄
j,τ) updates the most recent challenge

received.

• C⃗: A list of received encrypted packets.

Additionally, we define the variables discussed in the methods as follows:

• mi: the i-th data to send over.

• ρ̄: Whichever party ρ is not.

• ACKτ : The packet number of the most recent challenge of type τ ∈ {1, 2}

received from ρ̄, but not yet acknowledged by ρ. If there is no challenge waiting

this value is ⊥.

• aρ
i,τ : A challenge generated by ρ, of type τ ∈ {1, 2} for packet number i. If i =⊥

then aρ
i,τ =⊥

• nρ
i−δ: the nonce used in generation of the one-time packet key by ρ for packet

number i− δ, where δ is the packet delay parameter. If i− δ < 0, then the value

of these field is ⊥.

For succinctness we say that the tuple {ρ, i, ACK1, ACK2} refers to the packet with

the structure:

C∥D, C := Enc(kρ
i , M, D)

M = aρ̄
ACK1,1∥ACK1∥mi∥aρ

i,2∥a
ρ̄
ACK2,2∥ACK2

D = i∥aρ
i,1∥ni−δ

91

5.3.6 Illustrated Protocol Flow

Figure 5-5 illustrates how LATENT works for a single packet from Alice to Bob.

WLOG, Bob uses the same process to authenticate its packets. The full LATENT

protocol works by Alice and Bob following this protocol for all the packets they send.

To make this protocol more comprehensible, we will break down what each message

sent serves (Note: Variables not mentioned are not relevant for the authentication of

mi , but will serve a role in the authentication of other packets):

• Message one: serves to provide Bob with ciphertext committing to mi.

• Message two: Bob sends ciphertext commitment with the first acknowledge-

ment of mi.

• Message three: Alice reveals the opening to the commitment to mi. This

allows Bob to compute ki, and verify that the ciphertext and additional data,

challenge Ai, and packet number i, have not been tampered with. At this stage

Bob can read mi and the second challenge aρ
i,2.

• Message four: Bob reveals opening to commitment containing the first ac-

knowledgement. Alice can now verify Bob sent the first acknowledgement and

use the time of receipt to compute the baseline RTT of the connection.

• Message five: Bob sends ciphertext commitment with the second acknowledge-

ment of mi.

• Message six: Bob reveals opening to commitment containing the second

acknowledgement. Alice can now verify Bob sent the second acknowledgement

and use the time of receipt to compute the forced latency RTT.

Note: Message two may occur anytime after message one. Message three occurs δ

packets after message one. Message four occurs δ packets after message two. Message

92

five may occur anytime after message three. Message six occurs δ packets after message

five.

5.3.7 Potential Extensions

Although it LATENT adds additional latency, this protocol should allow for viable

communication where eavesdroppers can be detected. However, it may be preferable

to remove artificial latency once both parties are assured there is no MitM present.

As mentioned earlier, the latency parameter itself cannot be adjusted dynamically

without significant security risks. Alternatively, once both parties are satisfied there is

no MitM present, there could be an option to perform a Key Agreement protocol such

as Diffie-Hellman Key Exchange. Thus, the parties would now have a shared secret

they could use to communicate on a new channel without need for LATENT or fear of

an MitM. In this way, LATENT may be used to bootstrap further security protocols.

5.4 Proving LATENT is a Secure HASC protocol

Theorem 5.1. Let n be the security parameter, and ℓ be the nonce length, and w

be the length of packet challenges. Assume that the AEAD scheme is secure, the

KDF is secure, the CDH is hard. Furthermore assume that the Turing test is hard.

Additionally suppose that the number of packets t sent by honest parties in this protocol

will always be significantly larger than ϵ, the fabrication parameter in the Turing test.

Then LATENT is a (t′, ϵ)− secure HASC protocol for all t′ > ϵ.

We will first provide a sketch of the proof to provide intuition and then detail the

full proof.

Proof sketch.

Fundamentally, the objective is demonstrating that the adversary cannot win the

authentication challenge if the session keys of two participants do not match. Clearly,

93

Alice Bob

Key Exchange
{ρ, i, ACK1, ACK2}

{ρ̄, i′, i, ACK2}

{ρ, i + δ, ACK1, ACK2}

{ρ̄, i′ + δ, ACK1, ACK2}

{ρ̄, i′ + σ, ACK1, i}

{ρ̄, i′ + σ + δ, ACK1, ACK2}

msc LATENT Protocol authenticating mi from Alice

Figure 5-5. Illustration of how LATENT authenticates packets. Explanation of simplified
packet structure: ρ denotes a message by Alice, while ρ̄ denotes a message by Bob. The
second field denotes the packet number. The third and fourth fields denote the packet
receiving its first and second acknowledgement (Here ACK1 and ACK2 are placeholders if
those acknowledgements are not relevant to the authentication of packet i).

94

if both parties are entering the post-accept phase with honestly generated keys, it is

easy to see that the adversary should not have an advantage to winning the encryption

challenge.

Thus the core of our proof is showing that our protocol ensures that both partici-

pants reject at the end of the auth phase if their keys do not match.

The fundemental idea we leverage is the very fact that the keys do not match

and how our protocol mixes that key information into its messages. The adversary

can never send over messages unmodified as every message encodes that parties key

information and would reveal a mismatch. Thus, the adversary is forced into an active

role and our goal is to demonstrate any active tampering with the protocol will be

detectable.

The way our protocol proceeds is by forcing the adversary to make a detectable

choice for each packet sent: either wait for the packet opening and then replace all the

key dependent information with that of the recipient or attempt to forge a message.

Clearly, waiting for the packet openings has a straightforward detection process. In

each packet, in addition to the message content is also acknowledgements of received

packets. To delay these packets to fix them up is also to delay the acknowledgement

of packets and thus parties can easily see this discrepancy in their measured latency.

Alternatively, an adversary can choose to just forge the messages sent and therefore

not need to wait for packet openings. However, this is where the Turing Authentication

game comes in. We allow for the adversary to be able to forge a small number of

packets. However, for the adversary to forge enough packets to make it through the

auth phase without also triggering the latency detection would require more fabricated

packets than is considered possible in the Turing Authentication game. Thus, if an

adversary was able to forge this many packets, it could also be used as a winning

adversary for that game as well.

95

Thus, whether the adversary attempts to conceal their presence through waiting

for packet openings and replacing the contents or by forging messages, they will not

be able to avoid detection with non-negligible probability. And thus, the rest of the

proof follows from this point.

5.4.1 Full Proof of Security

In order to prove Theorem 5.1 we will divide the set of all adversaries into two

categories:

1. Adversaries that succeed in making an oracle authenticate maliciously. We call

such an adversary an authentication adversary.

2. Adversaries who do not succeed in making an oracle auth maliciously, but which

answer the encryption challenge. We call such an adversary an encryption-

adversary.

Lemma 5.1. The probability that an adversary can cause an oracle to authenticate

maliciously is negligible.

Proof. The proof proceeds in a sequence of games, where the first game is the real

security experiment. We then describe several intermediate games that modify the

original game step by step and argue or complexity assumptions imply each game is

indistinguishable from the previous. We end up in the final game, where no adversary

can break the security of the protocol.

Game 0. In this hybrid, A interacts as described for the HASC security experiment

described in Section 5.2.2.

96

Game 1 (Abort if two oracles sample the same key share) This hybrid

modifies the previous as follows:

In the event that any two oracles select the same DH key share abort. Since

each oracle samples their own key share independently, we know that there is a

negligible chance that two shares collide. Thus the adversary has a negligible

advantage in distinguishing this game from Game 0.

Game 2 (Guess which oracles will authenticate maliciously first, abort if

wrong) This hybrid modifies the previous as follows:

We as the challenger guess the indices of the oracles that will first authenticate

maliciously. If some other oracles authenticate first, we abort. Since there are

only a polynomial number of communicating pairs, this only modifies the win

probability of the adversary by a polynomial factor. Thus the adversary still

has a negligible advantage in distinguishing this game from Game 1.

Game 3 (Abort on matching maliciously produced session keys) This hybrid

modifies the previous as follows:

In the event that two communicating parties without matching conversations

during the pre-accept phase arrive at the same key, then abort. We know that

honest parties with matching conversations will always arrive at the same key.

By the properties of cyclic groups, for any x, y s.t. gx = gy, x = y. Thus, if the

two parties arrive at keys gar1 , gbr2 respectively, the adversary must have picked

r1, r2 s.t. ar1 = br2, which would only happen with negligible chance. Thus the

adversary has a negligible advantage in distinguishing this game from Game 2.

Game 4 (If A is not party to a connection, send random data) This hybrid

modifies the previous as follows:

If A is not party to a connection, and thus the communicating parties having

97

matching conversations at the end of the pre-accept phase and arrive at the

same session key, then C has the communicating oracles send encryptions of

random data instead of following the LATENT protocol.

If communicating parties succeed in arriving at an honestly generated key, there

are only certain strategies for A to win. Dropping packets or mauling messages

would trivially not give the adversary and advantage in distinguishing this game.

If the adversary knows the key, then it could distinguish this hybrid from the

previous one by decrypting messages. However, if the key is honestly generated

then for the adversary to learn the key knowing only the key shares would break

the CDH assumption.

Alternatively, if the adversary does not know the key but still distinguishes this

hybrid from the previous one with non-negligible advantage, we can use it to

build a solver for the AE game. Assume a real experiment where all data across

all honest connections is honestly generated and an ideal experiment where all

data is random data. Now consider that the adversary can run any number of

honest connections. We proceed by hybrid argument, where the 0-th hybrid is

the real experiment and the final hybrid is the ideal experiment. Let the i-th

hybrid be such that all connections up to the i-th connection produced by the

adversary only have random data sent over, and all later ones do not. We argue

that hybrid i and i+1 are indistinguishable, because if there existed an adversary

D that could distinguish the two we could do the following: We can build E ,

an AE solver with D as a subroutine. E runs D as well as the oracles that are

part of the HASC game that D interacts with. Upon querying the challenger

on the messages to encrypt for the i+1-th connection, it then sends over the

received ciphertexts between the parties on the connection. E returns D output.

Since D with non-negligible chance can tell whether the data being sent over

the i+1-th connection is random or not, it will detect whether the encryption

98

oracle actually encrypted the queried messages or not. Since we assume the AE

scheme is secure this is a contradiction, so there must be a negligible chance of

distinguishing the hybrids.

Game 5 (Abort if A mauls commitment) This hybrid modifies the previous as

follows:

If A mauls any ciphertext commitment sent, abort the protocol. By Game 3

we know that this must happen before A is able to open the commitment and

see the contents. However, we assumed that the ciphertext commitment was

generated by a secure AEAD, which clearly satisfies the requirements for a

nonmalleable commitment scheme. Thus, any attempt to maul would cause the

receiving part to abort after attempting to decrypt. As a result, this would have

a negligible effect on the adversaries win probability.

Game 6 (Abort if A waits for packet opening) This hybrid modifies the previous

as follows:

Upon intercepting a packet, if A waits until it received the packet opening nonce

before forwarding on the packet, then C aborts the protocol.

If either communicating party detects that packets have a 2δ delay, they will

abort the protocol. Thus, A must avoid introducing this delay in order to win.

If A naively waits for the packet opening nonce before sending on a packet then

that results in a δ delay. Since they have keep the receiving parties view of the

protocol correct, they have to wait another δ packets before sending the packet

opening nonce to the receiving party. Thus, the receiving party is able to read a

packet 2δ packets after it was initially sent. Since this is also when the receiver

is finally able to send the second acknowledgement of the packet, the sender

will be able to detect this delay. Thus, the adversary cannot avoid the sender

aborting in this scenario.

99

Clearly if A adds additional delay, that will only make the attack easier to detect

so that strategy would trivially fail.

Thus, the adversary needs to somehow reduce the delay they introduce by waiting.

Time cannot be modified in the real world, but the adversary can attempt to

create an illusion of this by artificially modifying the latency of the network.

The more the measured baseline RTT is increased, the smaller the additional

latency appears. However, if A tries to hide their attack by adding a δ delay

to baseline RTT measured, then removing this latency while performing their

attack then there is still an issue. The adversary is still causing an additional δ

delay to elapse. So the sender will still see that there is a 2δ delay in the network

and abort as a result.

Thus, no matter what A attempts to do, the sender will still detect the additional

delay. So there is no chance that A can win in this situation so aborting would

have no impact at the probability of winning the HASC game.

Game 7 (Abort if A can extract mi from its commitment) This hybrid

modifies the previous as follows:

C aborts if the A is able to obtain mi from its commitment, before receiving the

commitment opening. There are two possibilities for this happening:

A can extract mi if it is able to determine or influence the one-time packet

key. While A knows the long term keys of each party, it has no knowledge

of the random nonce used in key generation. Thus, in order to determine or

influence the key, it would have to break the security of the KDF, which it can

only do with negligible probability. Thus, aborting under this scenario would

only negligibly affect the win probability.

A could also can extract mi if it is able to break the AEAD scheme. However, we

have assumed that this is only possible with negligible probability. So aborting

100

under this scenario would also only negligibly affect the win probability.

Game 8 (Abort if A sends > ϵ fabricated messages) This hybrid modifies the

previous as follows:

C aborts if the A sends ≥ ϵ fabricated messages. If the adversary is able to win

in this scenario with non-negligible probability, then we can use it to win the

Human Authentication game with non-negligible probability.

We construct the adversary of the Turing Authentication game as follows: It

constructs the challenger for the HASC game using the Turing Authentication

oracles as the communicating oracles in the HASC game. We have A as a

subroutine in this adversary that interacts with this challenger. We know that

with non-negligible probability, A will be able to send > ϵ fabricated messages

without being detected. Thus, the Human oracle would not abort, so this

adversary wins the Turing Authentication game. However, we assumed that

winning Turing Authentication game only happens with negligible probability,

so aborting in this scenario would only negligibly affect the win probability.

Game 9 (Set oracle to be in reject-state after it receives ϵ messages) This

hybrid modifies the previous as follows:

Once one of the communicating oracles receives ϵ messages, it updates its

internal state to be in the reject-state. We can see that is negligibly affects

the win probability from the previous hybrid. To reach this scenario without

the challenger aborting means that A sends < ϵ fabricated messages due to

Game 8. Thus, at least one message must have its content unaltered.

By Game 6, A does not wait for a packet opening thus it could not have fixed

up the message. So the difference in keys is exposed and A’s interference is

revealed and the oracles would reject.

101

Thus since we have shown that there is a negligible difference between Game 0

and Game 9, the authentication challenge cannot be won with non-negligible

probability.

Lemma 5.2. The probability that an adversary can win the encryption challenge is

negligible.

Proof. he proof proceeds in a sequence of games, where the first game is the real

security experiment. We then describe several intermediate games that modify the

original game step by step and argue or complexity assumptions imply each game is

indistinguishable from the previous. We end up in the final game, where no adversary

can break the security of the protocol.

Game 0. In this hybrid, A interacts as described for the HASC security experiment

described in Section 5.2.2.

Game 1 (Abort if two oracles authenticate maliciously, and output ran-

dom b′) This hybrid modifies the previous as follows:

In this game, if a pair of oracles authenticate maliciously we abort and output a

random b′ value. We saw from Lemma 1 that the probability of this happening

is negligible. As a result, this would have a negligible effect on the adversaries

win probability.

Game 2 (If A is not party to a connection, send random data during the

post-accept phase) This hybrid modifies the previous as follows:

If A is not party to a connection, and thus the communicating parties having

matching conversations at the end of the pre-accept phase and arrive at the

102

same session key, then C has the communicating oracles send encryptions of

random data during the post-accept phase.

If communicating parties succeed in arriving at an honestly generated key, there

are only certain strategies for A to win. Dropping packets or mauling messages

would trivially not give the adversary and advantage in distinguishing this game.

If the adversary knows the key, then it could distinguish this hybrid from the

previous one by decrypting messages. However, if the key is honestly generated

then for the adversary to learn the key knowing only the key shares would break

the CDH assumption. Additionally, we know from Game 1 only oracles with

honestly generated keys will enter the post-accept phase. As a result, this would

have a negligible effect on the adversaries win probability.

Game 3 (Alway output a random b′) This hybrid modifies the previous as follows:

In all cases, if no one has aborted by time t, the challenger ends the protocol and

outputs a random b′. Since all messages being sent are random, the adversary

has no additional advantage to winning the encryption challenge. Thus in this

game, the challenger and adversaries output will be identically distributed.

Thus since we have shown that there is a negligible difference between Game 0

and Game 3, the encryption challenge cannot be won with non-negligible

probability.

Thus, with Lemma 1 and Lemma 2 we see that no adversary is able to win either

the authentication or encryption challenge with non-negligible probability and thus

LATENT is a (t′, ϵ)− secure HASC protocol for all t′ > ϵ.

103

5.5 Experimental Results

In order to assess the real world applicability of our protocol, we found it necessary to

test whether it would behave as expected in practice. In order to do this we chose

to build a video chat application that implements the LATENT protocol. Then we

analyzed the recorded latencies to see whether the delay manifested as expected.

We chose to test LATENT on top of video chat as it demonstrates the simultaneous

communication nature of LATENT. Additionally, we believe video chat is well suited

to protocols that rely on Human Authentication such as ours. While much of the

high entropy these protocols depend on comes from the content of the message,

the audio and visual aspects of a video chat only serve to increase this property.

Beyond message content, this factors in an individual’s particular delivery style or

facial expressions. Video chat also provides a constant stream of data for more

precise latency measurements, as real-time text messaging will likely have additional

intermessage delays that would add noise to the system.

5.5.1 Implementation

In order to build LATENT, we needed an operational video chat application that we

could extend to support our protocol. We decided to extend webRTC [35] as it is an

p2p open source platform that, while still under development, is being deployed in

popular web chat applications. We feel by building on top of such a popular platform

we further demonstrate that our system can offer practical usage.

We built our version of webRTC-LATENT by modifying the native c++ webRTC

desktop application, configured over UDP, to implement the methods from figure

5-4. While it was possible to build our protocol on top on a reliable transport, as we

mentioned earlier this was not a goal of the paper. WebRTC consists of a signaling

phase where clients communicate with a server to establish a p2p session and a session

104

key is established. Then the clients exchange messages directly in a channel protected

by DTLS, potentially with a TURN server relaying messages if clients are behind

a NAT. The signaling phase and communicating phases map fairly clearly to the

pre-accept and post accept phases in our definition.

We chose to look in particular at the scenario where a malicious signaling server

has also compromised the TURN server used. In this situation, since messages have to

travel through a relay anyways, the present of a MitM would not change the expected

path of packets. The malicious server would ensure that the relay is able to decrypt

any packets that it receives in the absence of LATENT. The MitM follows the strategy

of delaying until it receives packet openings and then repackaging the messages under

the new key. As we argued in 5.4, the adversary is limited in what it can get away with

so ensuring our protocol works in this scenario should be sufficient to demonstrate

practical security.

In Figure 5-8 we provide a visualization of how LATENT impacts calls in practice

in the honest and MitM settings. As we can see, the presence of an MitM would add

a noticeable additional delay to any communications.

5.5.2 Experimental Setup

We ran our experiments on Ubuntu 16.04 VM running with 4GB RAM each and 2.6

GHz Intel Core i7 CPU. Tests were run over the regular lab network. Key exchange

was performed over DTLS and we used tweetnacl [3, 95] as our AEAD. We instantiated

our protocol with δ = 10 which translates into a delay of roughly 50ms4.

Our experiments consisted of recording the timing data gathered by LATENT

over a series of 10 video calls with a 5 minute duration each. Using this data, we can

examine whether the latency manifests as expected as well as assess the effectiveness

of detecting an MitM. These calls were also used to qualitatively verify that our video
4We heuristically found this delay to be easy to detect in normal circumstances

105

chat could still be used to viably communicate despite the added latency.

To see how the latency manifests, we will examine the density plots and means

of the averaged data. To see the accuracy of our detection, we calculate given the

average latency so far in ten second increments (to model performing this check every

10 seconds). Then if the observed latency appears to be greater than 2δ we predict an

MitM is present. This detection strategy is dynamic and ongoing throughout the call.

We compare the predictions to the actual scenario and average between our trials to

get our final results. An important advantage of our protocol is that it is resilient to

some degree of packet loss, since we compute average latency over many packets.

While this detection strategy was suitable in the evaluation of our proof of concept,

we note that in practice a stricter detection would be preferable. Alternative approaches

could have multiple measurement windows, where a majority vote after a specified

number of windows would determine whether a MitM is present. A very lossy channel

could be handled by using a rolling average to compute latency. A more aggressive

strategy could see if any any measured latency is 2 ∗ δ. As we see in the results section,

this approach might be viable when parties are close-by or the network has a stable

connection.

5.5.3 Results and Analysis

The results of our experiments are shown in Figures 5-6 and 5-7. From Figure 5-6 we

see that we can reliably measure latency and that the MitM adds a clear difference to

the latency distributions.

We can see that the overall measured latency adds about an additional 50ms delay

on average with our setting of δ = 10. In the scenario without an MitM, it seems that

the additional delay is consistent with respect to the baseline measurements.

We note that the means seem to be skewed to the right somewhat, and this appears

to be the result of rare but large spikes in the latency of the connection. However,

106

Figure 5-6. Comparison of latency distributions when MitM is present and absent

107

Figure 5-7. Average accuracy of MitM detection over the course of a video call

Figure 5-8. Visualization of the impact of LATENT on a call. In each diagram, we have
an audio rendering of one party asking a question and the other party responding from the
perspective of the first party. The top diagram has no MitM present, while the bottom
diagram does. The bars under the audio represent the following 5 stages: 1) the encrypted
packets being sent by the first party. 2) The openings of those encrypted packets. 3) The
second party hearing the sent audio. 4) The first party receiving encrypted packets with
the second party’s response. 5) The first party receiving the packet openings and hearing
the received audio. Red bars represent encrypted packets and green bard represent the
opening of those packets. Blue bars represent when the audio is heard by the second party.

108

Figure 5-9. Latency and Jitter (measured in ms) for TURN servers located in different
regions)

109

there are still a few observations we can make. We see that baseline latency when an

MitM is present includes the effects of δ, while this is not the case if there is no MitM.

We can also see how while the baseline during an MitM attack is higher, the actual

latency measured is still a function of 2δ. As predicted while the MitM can make the

connection seem slower than reality, they cannot remove the artificial latency from

appearing in some form.

In Figure 5-7 we look at how our successful our detection of MitMs are. First in the

case where there is no MitM, we see that there is on average a high level of accuracy

in correctly determining that the channel is free of eavesdroppers. The accuracy does

decline slightly over time, likely due to occasional spikes in latency. However, with

the observed trend, it is unlikely that accuracy will significantly fall.

In the case where an MitM is present, we see something far more dramatic. There

is a rapid increase in accuracy, which grows sharply from 0 before flatting out around

90% correct prediction for the remainder of the call. This seems to indicate that the

differences in latency caused by an MitM’s presence are significant enough to detect

reliably.

Overall, we find that LATENT can detect MitM in practice and provide an

additional avenue to authenticate a communication channel.

5.5.4 TURN server analysis

In addition to our experiments run for the LATENT protocol, we wished to also

understand what the latency and jitter expectations are like for real world webRTC

systems using different TURN servers. This information would better inform the ideal

value for the latency parameter δ as well as which settings are viable (i.e. what would

it be like for a long range international call?).

In order to do this we made use of the global TURN server infrastructure provided

by Xirsys [33]. These are production TURN servers that are actively supporting

110

webRTC applications. As a result, these servers should provide realistic numbers

of what latency and jitter would be like for a deployed application. We then used

the same experimental setup as before to measure the baseline round trip latencies

experienced, except we varied the TURN server used. For these experiments the test

machines are located near US East.

The results of this are detailed in figure 5-9. We see that for local and US East,

the amount of round trip latency experienced is quite low and a small δ is probably

realistic. However, further locations such as US West and Europe (Frankfurt) result in

a larger latency and as a result, require a larger δ in order for it to dominate the total

latency measure. We note that since we are assuming both parties to be equidistant

to the TURN server, this is roughly double what would be measured if one party was

actually located in one of these regions. Finally, we see that the latency is almost

500ms for the Asia (Singapore) TURN server. As it is unlikely that a server this far

would be considered equidistant for two parties, we can see this as an upper bound on

the existing latency in the network. As calls at this latency would already be difficult

to maintain, the LATENT protocol is less viable for calls this long range.

Interestingly, jitter seems to be fairly consistent among all regions, with only a

very slight increase from about 7ms to 13ms as we move from Europe to Asia. This

is significant as it means that average latency measurements should remain fairly

accurate even for small samples. Additionally, it indicates that jitter detection could

be a potential secondary avenue to detect MitMs.

As TURN servers are an agreed upon system parameter and can be publicly pinged,

having established values of δ based on which TURN server is being used could be

a way to have a more adjustable amount of added latency which can fit different

communication scenarios while still being robust to adversarial manipulation.

111

5.6 Related Work

We briefly highlight similar avenues of work to what is presented in this paper.

5.6.1 Other Forced Latency Variants

Forced latency protocols received further attention in [22, 57, 88, 101], however they

all have similar limitations. These protocols all attempt to refine Interlock into a

more practical protocol, however they still rely on a poorly defined notion of "semantic

irregularity" in the conversation contents. Additionally, messages are assumed to be

sent sequentially and both parties are not guaranteed the same detection properties.

We see our work as specifically addressing these limitations. There is also the TESLA

protocol [75], but this protocol does not make any attempt to hide conversation data.

5.6.2 Distance Bounding

Distance bounding is sometimes offered as a solution to detecting MitM [80]. However,

these protocols rely on extremely low latency which is not always realistic. Additionally,

if the client do not know their relative geographic separation, it is difficult to effectively

employ these techniques. In situations where relays are used, a compromised relay

would not impact the distance packets travel so a distance bounding approach would

not detect its presence.

5.6.3 Captchas and Human-Based Cryptography

The idea of using humans to build cryptography is not new. It was first introduced

formally by Naor [69] and has been most popularly applied in the form of Captchas [7,

8, 18, 55, 69, 98] and security ceremonies [78]. These techniques are distinguished

by their use of puzzles, which in some instances can be generated by computer,

that can only be solved by Humans. While this is a very robust area of research it

focuses primarily on offline solvable puzzles and detecting a human in a human to

112

computer interaction. Our work instead attempts to allow for two humans to mutually

authenticate in an online setting that does not require prior setup of puzzles or other

functionalities.

There has also been work building systems where a human can verify authentication

was done properly through the use of "human perceptible freshness" (HPF) and

"human perceptible authenticators" (HPAs) [79]. However, these systems also assume

the existence of an out-of-band channel that can perform this authentication, an

assumption that our work does not make.

Beyond authentication, there have been other attempts to combine humans and

cryptography to produce hybrid crypto-systems [38]. These systems either leverage

humans to perform some subtask, or allow humans to carry out some cryptographic

functionality without the need of a computer.

5.7 Conclusion

In this work we investigated a framework for constructing secure communications

protocols by combining forced-latency with a set of assumptions about humans’ ability

to detect impersonation. This is, to our knowledge, the first work to provide both

a security framework and a set of working protocol tools for this problem. Our

work leaves several open problems: at present, we are unable to adaptively select

network latencies based on real-world network conditions, as this adaptation opens

new opportunities for attackers to manipulate the network. Moreover, it would be

valuable to conduct an empirical evaluation of how well our human authentication

assumptions hold up under different forms of adversarial manipulation. Finally, it

would be interesting to how protocols such as LATENT can be used to bootstrap

security in various settings.

113

Bibliography

[1] Mihir Bellare. “Practice-oriented provable-security.” In: Information Security: First
International Workshop, ISW’97 Tatsunokuchi, Ishikawa, Japan September 17–19,
1997 Proceedings 1. Springer. 1998, pp. 221–231.

[2] Mihir Bellare and Phillip Rogaway. “Entity Authentication and Key Distribution.”
In: Proceedings of the 13th Annual International Cryptology Conference on Advances
in Cryptology. CRYPTO ’93. Santa Barbara, California, USA: Springer-Verlag, 1994,
pp. 232–249. url: http://dl.acm.org/citation.cfm?id=188105.188164.

[3] Daniel J Bernstein et al. “TweetNaCl: A crypto library in 100 tweets.” In: International
Conference on Cryptology and Information Security in Latin America. Springer. 2014,
pp. 64–83.

[4] Bruno Biais et al. Equilibrium Bitcoin Pricing. doi: 10.2139/ssrn.3261063.
[5] Block Chain Analysis. Block Chain Analysis. http://www.block-chain-analysis.

com/. 2014.
[6] Josh Blum et al. “E2e encryption for zoom meetings.” In: Zoom Video Commun.,

Inc., San Jose, CA, Tech. Rep. Version 2.1 (2020).
[7] Alexandra Boldyreva, Vipul Goyal, and Virendra Kumar. “Identity-based encryption

with efficient revocation.” In: Proceedings of the 15th ACM conference on Computer
and communications security. ACM. 2008, pp. 417–426.

[8] A. Boldyreva et al. “Human Computing for Handling Strong Corruptions in Au-
thenticated Key Exchange.” In: 2017 IEEE 30th Computer Security Foundations
Symposium (CSF). Aug. 2017, pp. 159–175. doi: 10.1109/CSF.2017.31.

[9] Dan Boneh and Xavier Boyen. “Efficient Selective-ID Secure Identity-Based Encryp-
tion Without Random Oracles.” In: EUROCRYPT ’04. Vol. 3027 of LNCS. 2004,
pp. 223–238.

[10] Dan Boneh et al. “How relevant is the Turing test in the age of sophisbots?” In:
IEEE Security & Privacy 17.6 (2019), pp. 64–71.

[11] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record Communication, or,
Why Not to Use PGP.” In: WPES ’04. Washington DC, USA: ACM Press, 2004,
pp. 77–84. doi: 10.1145/1029179.1029200.

[12] Yazan Boshmaf, Husam Al Jawaheri, and Mashael Al Sabah. “BlockTag: Design
and Applications of a Tagging System for Blockchain Analysis.” In: Proceedings of
the 34th IFIP TC11 Information Security Conference & Privacy Conference. Ed. by
Gurpreet Dhillon et al. Lisbon, Portugal: Springer International Publishing, June
2019, pp. 299–313. doi: 10.1007/978-3-030-22312-0_21.

114

http://dl.acm.org/citation.cfm?id=188105.188164
http://dx.doi.org/10.2139/ssrn.3261063
http://www.block-chain-analysis.com/
http://www.block-chain-analysis.com/
http://dx.doi.org/10.1109/CSF.2017.31
http://dx.doi.org/10.1145/1029179.1029200
http://dx.doi.org/10.1007/978-3-030-22312-0_21

[13] JP Buntinx. “What is RuffCT and How Will It Affect Monero?” In: The Merkle
(2017).

[14] Benedikt Bünz et al. “Bulletproofs: Short Proofs for Confidential Transactions and
More.” In: 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[15] ByteCoin. At https://bytecoin.org/.
[16] Jon Callas, Alan Johnston, and Philip Zimmermann. ZRTP: Media Path Key Agree-

ment for Unicast Secure RTP. RFC 6189. Apr. 2011. doi: 10.17487/RFC6189. url:
https://rfc-editor.org/rfc/rfc6189.txt.

[17] Jan Camenisch and Anna Lysyanskaya. “Dynamic Accumulators and Application
to Efficient Revocation of Anonymous Credentials.” In: CRYPTO ’02. Extended
Abstract. 2002. url: http://cs.brown.edu/~anna/papers/camlys02.pdf.

[18] Ran Canetti, Shai Halevi, and Michael Steiner. “Mitigating Dictionary Attacks on
Password-Protected Local Storage.” In: Advances in Cryptology - CRYPTO 2006.
Ed. by Cynthia Dwork. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 160–
179.

[19] Chainalysis. Chainalysis Inc. https://chainalysis.com/. 2017.
[20] John Chan and Phillip Rogaway. “On Committing Authenticated-Encryption.” In:

2022, pp. 275–294. doi: 10.1007/978-3-031-17146-8_14.
[21] Alishah Chator and Matthew Green. “How to squeeze a crowd: reducing bandwidth

in mixing cryptocurrencies.” In: 2018 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW). IEEE. 2018, pp. 40–49.

[22] David Chaum. Distributed Communication Security Systems. U.S. Patent Application
Publication 2006/0218636 A1. Sept. 2006.

[23] David L Chaum. “Untraceable electronic mail, return addresses, and digital pseudony-
ms.” In: Communications of the ACM 24.2 (1981), pp. 84–90.

[24] W. Diffie and M. Hellman. “New Directions in Cryptography.” In: IEEE Trans.
Inf. Theor. 22.6 (Sept. 1976), pp. 644–654. doi: 10.1109/TIT.1976.1055638. url:
http://dx.doi.org/10.1109/TIT.1976.1055638.

[25] dnaleor. Warning: DASH privacy is worse than Bitcoin. Steemit. July 13, 2016. url:
https://steemit.com/bitcoin/@dnaleor/warning-dash-privacy-is-worse-
than-bitcoin (visited on 02/07/2020).

[26] Yevgeniy Dodis et al. “Anonymous Identification in Ad Hoc Groups.” In: Advances
in Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. 2004, pp. 609–626. doi: 10.1007/978- 3- 540- 24676- 3_36. url:
https://doi.org/10.1007/978-3-540-24676-3_36.

[27] Yevgeniy Dodis et al. “Fast Message Franking: From Invisible Salamanders to En-
cryptment.” In: 2018, pp. 155–186. doi: 10.1007/978-3-319-96884-1_6.

[28] Elliptic. Elliptic Enterprises Limited. https://www.elliptic.co/. 2017.
[29] Michael Fröwis et al. “Safeguarding the Evidential Value of Forensic Cryptocurrency

Investigations.” In: (July 28, 2019). arXiv: 1906.12221.

115

http://dx.doi.org/10.1109/SP.2018.00020
https://bytecoin.org/
http://dx.doi.org/10.17487/RFC6189
https://rfc-editor.org/rfc/rfc6189.txt
http://cs.brown.edu/~anna/papers/camlys02.pdf
https://chainalysis.com/
http://dx.doi.org/10.1007/978-3-031-17146-8_14
http://dx.doi.org/10.1109/TIT.1976.1055638
http://dx.doi.org/10.1109/TIT.1976.1055638
https://steemit.com/bitcoin/@dnaleor/warning-dash-privacy-is-worse-than-bitcoin
https://steemit.com/bitcoin/@dnaleor/warning-dash-privacy-is-worse-than-bitcoin
http://dx.doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-540-24676-3_36
http://dx.doi.org/10.1007/978-3-319-96884-1_6
https://www.elliptic.co/
http://arxiv.org/abs/1906.12221

[30] Yipeng Gao et al. “Research on the Security of Visual Reasoning CAPTCHA.” In:
USENIX Security Symposium. 2021, pp. 3291–3308.

[31] Christina Garman et al. “Dancing on the Lip of the Volcano: Chosen Ciphertext
Attacks on Apple iMessage.” In: 2016, pp. 655–672.

[32] Mike Gleason. Microsoft adds end-to-end encryption to Teams. 2021. url: https:
//www.techtarget.com/searchunifiedcommunications/news/252511130/Micro
soft-adds-end-to-end-encryption-to-Teams.

[33] Global TURN Server Cloud Provider - Xirsys - WebRTC. [Online; accessed 15. Feb.
2023]. Aug. 2022. url: https://xirsys.com.

[34] Steven Goldfeder et al. “When the cookie meets the blockchain: Privacy risks of web
payments via cryptocurrencies.” In: Proceedings on Privacy Enhancing Technolo-
gies. Ed. by Rachel Greenstadt, Damon McCoy, and Carmela Troncoso. Vol. 2018.
Barcelona, Spain: Sciendo, Oct. 2018, pp. 179–199. doi: 10.1515/popets-2018-0038.

[35] Opera Google Mozilla. WebRTC project. 2007. url: https://webrtc.org/.
[36] Matthew D. Green and Ian Miers. “Bolt: Anonymous Payment Channels for Decen-

tralized Currencies.” In: CCS ’16. Vol. 2016. 2016. url: http://eprint.iacr.org/
2016/701.

[37] Jens Groth and Markulf Kohlweiss. “One-Out-of-Many Proofs: Or How to Leak a
Secret and Spend a Coin.” In: Advances in Cryptology - EUROCRYPT 2015 - 34th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II. 2015, pp. 253–
280. doi: 10.1007/978-3-662-46803-6_9. url: https://doi.org/10.1007/978-
3-662-46803-6_9.

[38] Kimmo Halunen and Outi-Marja Latvala. “Review of the use of human senses and
capabilities in cryptography.” In: Computer Science Review 39 (Feb. 2021), p. 100340.
doi: 10.1016/j.cosrev.2020.100340.

[39] Bernhard Haslhofer, Roman Karl, and Erwin Filtz. “O Bitcoin Where Art Thou?
Insight into Large-Scale Transaction Graphs.” In: Joint Proceedings of the Posters and
Demos Track of the 12th International Conference on Semantic Systems and the 1st
International Workshop on Semantic Change & Evolving Semantics (SuCCESS’16).
Ed. by Michael Martin, Martí Cuquet, and Folmer Erwin. Leipzig, Germany: CEUR-
WS.org, Sept. 13, 2016. url: http://ceur-ws.org/Vol-1695/paper20.pdf (visited
on 06/14/2020).

[40] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. “Blindly Signed Contracts:
Anonymous On-Blockchain and Off-Blockchain Bitcoin Transactions.” In: BITCOIN
’16. 2016.

[41] Dennis Hofheinz and Eike Kiltz. “Programmable Hash Functions and Their Applica-
tions.” In: CRYPTO 2008. Ed. by David Wagner. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 21–38.

[42] Susan Hohenberger and Brent Waters. “Realizing Hash-and-Sign Signatures under
Standard Assumptions.” In: Advances in Cryptology - EUROCRYPT 2009. Ed. by
Antoine Joux. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 333–350.

116

https://www.techtarget.com/searchunifiedcommunications/news/252511130/Microsoft-adds-end-to-end-encryption-to-Teams
https://www.techtarget.com/searchunifiedcommunications/news/252511130/Microsoft-adds-end-to-end-encryption-to-Teams
https://www.techtarget.com/searchunifiedcommunications/news/252511130/Microsoft-adds-end-to-end-encryption-to-Teams
https://xirsys.com
http://dx.doi.org/10.1515/popets-2018-0038
https://webrtc.org/
http://eprint.iacr.org/2016/701
http://eprint.iacr.org/2016/701
http://dx.doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
https://doi.org/10.1007/978-3-662-46803-6_9
http://dx.doi.org/10.1016/j.cosrev.2020.100340
http://ceur-ws.org/Vol-1695/paper20.pdf

[43] Danny Yuxing Huang et al. “Tracking Ransomware End-to-end.” In: Proceedings of
the 39th IEEE Symposium on Security & Privacy (S&P). Ed. by Bryan Parno and
Christopher Kruegel. San Francisco, CA, USA: Institute of Electrical and Electronics
Engineers (IEEE), May 2018, pp. 618–631. doi: 10.1109/SP.2018.00047.

[44] Tibor Jager et al. “On the security of TLS-DHE in the standard model.” In: Advances
in Cryptology–CRYPTO 2012. Springer, 2012, pp. 273–293.

[45] Wenzel Jakob. Lock-free parallel disjoint set data structure. June 14, 2020. url:
https://github.com/wjakob/dset.

[46] Wenzel Jakob. pybind11 — Seamless operability between C++11 and Python. Ver-
sion 2.5.0. Mar. 31, 2020. url: https://github.com/pybind/pybind11.

[47] Aaron Johnson et al. “Users get routed: traffic correlation on Tor by realistic adver-
saries.” In: 2013, pp. 337–348. doi: 10.1145/2508859.2516651.

[48] Marc Jourdan et al. “Characterizing Entities in the Bitcoin Blockchain.” In: 2018
IEEE International Conference on Data Mining Workshops (ICDMW). Singapore,
Singapore: Institute of Electrical and Electronics Engineers (IEEE), Oct. 2018, pp. 55–
62. doi: 10.1109/ICDMW.2018.00016.

[49] Ari Juels and John G Brainard. “Client puzzles: A Cryptographic countermeasure
against connection depletion attacks.” In: NDSS. Vol. 99. 1999, pp. 151–165.

[50] Harry A. Kalodner et al. BlockSci: Design and applications of a blockchain analysis
platform. Arxiv.org. 2017. url: http://arxiv.org/abs/1709.02489.

[51] Harry A. Kalodner et al. “BlockSci: Design and applications of a blockchain analysis
platform.” In: 2020, pp. 2721–2738.

[52] By Leo Kelion. “Deepfake detection tool unveiled by Microsoft.” In: BBC News (Sept.
2020). url: https://www.bbc.com/news/technology-53984114.

[53] Hugo Krawczyk. “HMQV: A High-Performance Secure Diffie-Hellman Protocol.” In:
Advances in Cryptology – CRYPTO 2005. Ed. by Victor Shoup. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2005, pp. 546–566.

[54] Hugo Krawczyk. “SIGMA: The ’SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols.” In: Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara, California,
USA, August 17-21, 2003, Proceedings. Vol. 2729. Lecture Notes in Computer Science.
Springer, 2003, pp. 400–425. doi: 10.1007/978-3-540-45146-4_24. url: https:
//iacr.org/archive/crypto2003/27290399/27290399.pdf.

[55] Abishek Kumarasubramanian et al. “Cryptography Using Captcha Puzzles.” In:
Public-Key Cryptography – PKC 2013. Ed. by Kaoru Kurosawa and Goichiro Hanaoka.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 89–106.

[56] Adam Langley et al. “The quic transport protocol: Design and internet-scale deploy-
ment.” In: Proceedings of the conference of the ACM special interest group on data
communication. 2017, pp. 183–196.

[57] EF Lanus and EV Zieglar. “Analysis of a Forced-Latency Defense Against Man-
in-the-Middle Attacks.” In: Journal of Information Warfare 16.2 (2017), pp. 66–
IV.

117

http://dx.doi.org/10.1109/SP.2018.00047
https://github.com/wjakob/dset
https://github.com/pybind/pybind11
http://dx.doi.org/10.1145/2508859.2516651
http://dx.doi.org/10.1109/ICDMW.2018.00016
http://arxiv.org/abs/1709.02489
https://www.bbc.com/news/technology-53984114
http://dx.doi.org/10.1007/978-3-540-45146-4_24
https://iacr.org/archive/crypto2003/27290399/27290399.pdf
https://iacr.org/archive/crypto2003/27290399/27290399.pdf

[58] Giulio Malavolta and Dominique Schröder. Efficient Ring Signatures in the Standard
Model. In ASIACRYPT ’17. 2017.

[59] Bill Marczak and John Scott-Railton. “Move fast and roll your own crypto.” In:
Report, The Citizen Lab (2020).

[60] Momina Masood et al. “Deepfakes generation and detection: state-of-the-art, open
challenges, countermeasures, and way forward.” In: Appl. Intell. 53.4 (Feb. 2023),
pp. 3974–4026. doi: 10.1007/s10489-022-03766-z.

[61] Gregory Maxwell. CoinJoin: Bitcoin privacy for the real world. Available at https:
//bitcointalk.org/index.php?topic=279249.0. Aug. 2013.

[62] Frank McSherry, Michael Isard, and Derek Gordon Murray. “Scalability! But at what
COST?” In: Proceedings of the 15th Workshop on Hot Topics in Operating Systems
(HotOS XV). Ed. by George Candea. Kartause Ittingen, Switzerland: USENIX
Association, May 2015. url: https://www.usenix.org/conference/hotos15/
workshop-program/presentation/mcsherry (visited on 06/12/2020).

[63] Sarah Meiklejohn et al. “A Fistful of Bitcoins: Characterizing Payments Among
Men with No Names.” In: Proceedings of the 2013 Internet Measurement Conference
(IMC). Ed. by Krishna Gummadi and Craig Partidge. Barcelona, Spain: Association
for Computing Machinery (ACM), Oct. 2013, pp. 127–140. doi: 10.1145/2504730.
2504747.

[64] Ian Miers et al. “Zerocoin: Anonymous Distributed E-Cash from Bitcoin.” In: Pro-
ceedings of the 2013 IEEE Symposium on Security and Privacy. SP ’13. 2013.

[65] Yisroel Mirsky and Wenke Lee. “The creation and detection of deepfakes: A survey.”
In: ACM Computing Surveys (CSUR) 54.1 (2021), pp. 1–41.

[66] Sandra Mitrović, Davide Andreoletti, and Omran Ayoub. “ChatGPT or Human?
Detect and Explain. Explaining Decisions of Machine Learning Model for Detecting
Short ChatGPT-generated Text.” In: arXiv preprint arXiv:2301.13852 (2023).

[67] Malte Möser et al. “An Empirical Analysis of Traceability in the Monero Blockchain.”
In: Proceedings on Privacy Enhancing Technologies. Ed. by Rachel Greenstadt, Damon
McCoy, and Carmela Troncoso. Vol. 2018. Barcelona, Spain: Sciendo, June 2018,
pp. 143–163. doi: 10.1515/popets-2018-0025.

[68] S. Nakamoto. “Bitcoin: A peer-to-peer electronic cash system, 2008.” In: (2008). url:
http://www.bitcoin.org/bitcoin.pdf.

[69] Moni Naor. “Verification of a human in the loop or Identification via the Turing
Test.” Oct. 1998.

[70] Shen Noether. “Ring SIgnature Confidential Transactions for Monero.” In: IACR
Cryptology ePrint Archive 2015 (2015), p. 1098. url: http://eprint.iacr.org/
2015/1098.

[71] OpenAI. “ChatGPT: Optimizing Language Models for Dialogue.” In: OpenAI (Feb.
2023). url: https://openai.com/blog/chatgpt.

[72] Brian Parno et al. “Pinocchio: Nearly Practical Verifiable Computation.” In: Pro-
ceedings of the 34th IEEE Symposium on Security and Privacy. Oakland ’13. 2013,
pp. 238–252.

118

http://dx.doi.org/10.1007/s10489-022-03766-z
https://bitcointalk.org/index.php?topic=279249.0
https://bitcointalk.org/index.php?topic=279249.0
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
https://www.usenix.org/conference/hotos15/workshop-program/presentation/mcsherry
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1145/2504730.2504747
http://dx.doi.org/10.1515/popets-2018-0025
http://www.bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/1098
http://eprint.iacr.org/2015/1098
https://openai.com/blog/chatgpt

[73] Cristina Pérez-Solà et al. Analysis of the SegWit adoption in Bitcoin. url: https:
//deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
(visited on 06/13/2020).

[74] Cristina Pérez-Solà et al. “Another coin bites the dust: an analysis of dust in UTXO-
based cryptocurrencies.” In: Royal Society Open Science 6.1 (1 Jan. 2019), p. 180817.
doi: 10.1098/rsos.180817.

[75] Adrian Perrig et al. “The TESLA broadcast authentication protocol.” In: Rsa Cryp-
tobytes 5.2 (2002), pp. 2–13.

[76] Andreas Pfitzmann and Marit Köhntopp. “Anonymity, unobservability, and pseudony-
mity—a proposal for terminology.” In: Designing privacy enhancing technologies.
Springer. 2001, pp. 1–9.

[77] Quality of Service Design Overview > QoS Requirements of VoIP | Cisco Press.
[Online; accessed 16. Feb. 2023]. Dec. 2004. url: https://www.ciscopress.com/
articles/article.asp?p=357102.

[78] Kenneth J Radke. “Security ceremonies: including humans in cryptographic protocols.”
PhD thesis. Queensland University of Technology, 2013.

[79] Kenneth Radke and Colin Boyd. “Security proofs for protocols involving humans.”
In: The Computer Journal 60.4 (2017), pp. 527–540.

[80] Jason Reid et al. “Detecting relay attacks with timing-based protocols.” In: Proceedings
of the 2nd ACM symposium on Information, computer and communications security.
ACM. 2007, pp. 204–213.

[81] Ronald L Rivest and Adi Shamir. “How to expose an eavesdropper.” In: Communica-
tions of the ACM 27.4 (1984), pp. 393–394.

[82] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret.” In:
ASIACRYPT ’01. Ed. by Colin Boyd. Berlin, Heidelberg: Springer Berlin Heidelberg,
2001, pp. 552–565.

[83] Phillip Rogaway. “Authenticated-Encryption with Associated-Data.” In: (2002).
[84] Dorit Ron and Adi Shamir. “Quantitative Analysis of the Full Bitcoin Transaction

Graph.” In: Financial Cryptography ’13. 2013.
[85] Nicolas van Saberhagen. Cryptonote v2.0. Available at https://cryptonote.org/

whitepaper.pdf. Oct. 2013.
[86] Eli Ben Sasson et al. “Zerocash: Decentralized anonymous payments from Bitcoin.”

In: IEEE Security and Privacy. 2014.
[87] Svenja Schroder et al. “When SIGNAL hits the Fan: On the Usability and Security

of State-of-the-Art Secure Mobile Messaging.” In: 1st European Workshop on Usable
Security. Proceedings of 1st European Workshop on Usable Security. July 2016. doi:
http://dx.doi.org/10.14722/eurousec.2016.23012. url: http://eprints.cs.
univie.ac.at/4799/.

[88] Alan T Sherman et al. “Chaum’s protocol for detecting man-in-the-middle: Explana-
tion, demonstration, and timing studies for a text-messaging scenario.” In: Cryptologia
41.1 (2017), pp. 29–54.

119

https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
https://deic-web.uab.cat/~guille/publications/papers/2018.recsi.segwit.pdf
http://dx.doi.org/10.1098/rsos.180817
https://www.ciscopress.com/articles/article.asp?p=357102
https://www.ciscopress.com/articles/article.asp?p=357102
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
http://dx.doi.org/http://dx.doi.org/10.14722/eurousec.2016.23012
http://eprints.cs.univie.ac.at/4799/
http://eprints.cs.univie.ac.at/4799/

[89] Maliheh Shirvanian and Nitesh Saxena. “Wiretapping via Mimicry: Short Voice
Imitation Man-in-the-Middle Attacks on Crypto Phones.” In: Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security. CCS ’14.
Scottsdale, Arizona, USA: ACM, 2014, pp. 868–879. doi: 10.1145/2660267.2660274.
url: http://doi.acm.org/10.1145/2660267.2660274.

[90] Shop with Dash. 2017. url: https://www.dash.org/merchants/.
[91] Signal. “What is a safety number and why do I see that it changed?” In: (2023). url:

https://support.signal.org/hc/en-us/articles/360007060632-What-is-a-
safety-number-and-why-do-I-see-that-it-changed-.

[92] Tom Simonite. “A Zelensky Deepfake Was Quickly Defeated. The Next One Might
Not Be.” In: WIRED (Mar. 2022). url: https://www.wired.com/story/zelensky-
deepfake-facebook-twitter-playbook.

[93] Iain Stewart et al. “Committing to quantum resistance: a slow defence for Bitcoin
against a fast quantum computing attack.” In: Royal Society Open Science 5.6 (6
June 2018), p. 180410. doi: 10.1098/rsos.180410.

[94] Shi-Feng Sun et al. “RingCT 2.0: A Compact Accumulator-Based (Linkable Ring
Signature) Protocol for Blockchain Cryptocurrency Monero.” In: ESORICS 2017.
Ed. by Simon N. Foley, Dieter Gollmann, and Einar Snekkenes. Cham: Springer
International Publishing, 2017, pp. 456–474.

[95] TweetNaCl. TweetNaCl. Available at https://tweetnacl.cr.yp.to. 2014.
[96] Serge Vaudenay. “Secure communications over insecure channels based on short

authenticated strings.” In: Advances in Cryptology - CRYPTO 2005: 25th Annual
International Cryptology Conference. Lecture Notes in Computer Science 3621 (2005),
pp. 309–326. url: http://infoscience.epfl.ch/record/99433.

[97] Elham Vaziripour et al. “Is that you, Alice? A Usability Study of the Authentication
Ceremony of Secure Messaging Applications.” In: Thirteenth Symposium on Usable
Privacy and Security (SOUPS 2017). Santa Clara, CA: USENIX Association, 2017,
pp. 29–47. url: https://www.usenix.org/conference/soups2017/technical-
sessions/presentation/vaziripour.

[98] Luis von Ahn et al. “CAPTCHA: Using Hard AI Problems for Security.” In: 2003,
pp. 294–311. doi: 10.1007/3-540-39200-9_18.

[99] Brent Waters. “Efficient Identity-Based Encryption Without Random Oracles.” In:
EUROCRYPT ’05. Vol. 3494 of LNCS. 2005, pp. 114–127.

[100] What is StringCT? [Online; accessed 15. Mar. 2023]. url: https://monero.stacke
xchange.com/questions/5997/what-is-stringct/5999#5999.

[101] Zooko Wilcox-O’Hearn. Defense Against Middleperson Attacks. Mar. 2003. url: http:
//web.archive.org/web/20040804155004/http://zooko.com:80/defense_
against_middleperson_attacks.html.

[102] Deressa Wodajo and Solomon Atnafu. “Deepfake video detection using convolutional
vision transformer.” In: arXiv preprint arXiv:2102.11126 (2021).

[103] XMRChain. Available at https://xmrchain.net/. 2017.

120

http://dx.doi.org/10.1145/2660267.2660274
http://doi.acm.org/10.1145/2660267.2660274
https://www.dash.org/merchants/
https://support.signal.org/hc/en-us/articles/360007060632-What-is-a-safety-number-and-why-do-I-see-that-it-changed-
https://support.signal.org/hc/en-us/articles/360007060632-What-is-a-safety-number-and-why-do-I-see-that-it-changed-
https://www.wired.com/story/zelensky-deepfake-facebook-twitter-playbook
https://www.wired.com/story/zelensky-deepfake-facebook-twitter-playbook
http://dx.doi.org/10.1098/rsos.180410
https://tweetnacl.cr.yp.to
http://infoscience.epfl.ch/record/99433
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/vaziripour
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/vaziripour
http://dx.doi.org/10.1007/3-540-39200-9_18
https://monero.stackexchange.com/questions/5997/what-is-stringct/5999#5999
https://monero.stackexchange.com/questions/5997/what-is-stringct/5999#5999
http://web.archive.org/web/20040804155004/http://zooko.com:80/defense_against_middleperson_attacks.html
http://web.archive.org/web/20040804155004/http://zooko.com:80/defense_against_middleperson_attacks.html
http://web.archive.org/web/20040804155004/http://zooko.com:80/defense_against_middleperson_attacks.html
https://xmrchain.net/

[104] Chen-Zhao Yang et al. “Preventing deepfake attacks on speaker authentication by
dynamic lip movement analysis.” In: IEEE Transactions on Information Forensics
and Security 16 (2020), pp. 1841–1854.

[105] Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. “Tracing Transactions Across
Cryptocurrency Ledgers.” In: Proceedings of the 28th USENIX Security Symposium
(USENIX Security). Ed. by Nadia Heninger and Patrick Traynor. Santa Clara, CA,
USA: USENIX Association, Aug. 2019, pp. 837–850. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/yousaf (visited on 06/13/2020).

[106] Yury Zhauniarovich et al. Characterizing Bitcoin donations to open source software
on GitHub. July 9, 2019. arXiv: 1907.04002.

[107] Zoom Acquires Keybase and Announces Goal of Developing the Most Broadly Used
Enterprise End-to-End Encryption Offering. May 2020. url: https://blog.zoom.
us/zoom-acquires-keybase-and-announces-goal-of-developing%5C%5C-the-
most-broadly-used-enterprise-end-to-end-encryption-offering/.

[108] Zoom is malware: why experts worry about the video conferencing platform. Apr.
2020. url: https://www.theguardian.com/technology/2020/apr/02/zoom-
technology-security-coronavirus-video-conferencing.

[109] Zoom to pay $85 million to users after lying about end-to-end encryption. Aug. 2021.
url: https://9to5mac.com/2021/08/03/zoom-to-pay-85-million-to-users-
after-lying%5C%5C-about-end-to-end-encryption/.

121

https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
https://www.usenix.org/conference/usenixsecurity19/presentation/yousaf
http://arxiv.org/abs/1907.04002
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing%5C%5C-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing%5C%5C-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://blog.zoom.us/zoom-acquires-keybase-and-announces-goal-of-developing%5C%5C-the-most-broadly-used-enterprise-end-to-end-encryption-offering/
https://www.theguardian.com/technology/2020/apr/02/zoom-technology-security-coronavirus-video-conferencing
https://www.theguardian.com/technology/2020/apr/02/zoom-technology-security-coronavirus-video-conferencing
https://9to5mac.com/2021/08/03/zoom-to-pay-85-million-to-users-after-lying%5C%5C-about-end-to-end-encryption/
https://9to5mac.com/2021/08/03/zoom-to-pay-85-million-to-users-after-lying%5C%5C-about-end-to-end-encryption/

	Abstract
	Dedication
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Design and applications of a blockchain analysis platform
	Our Contributions

	Reducing Bandwidth in Mixing Cryptocurrencies
	Our Contributions

	Detecting Man-in-the-Middle via Network Latency and Reverse Turing Tests
	Our Contributions
	Limitations

	Bibliographic Notes
	Outline of the Thesis

	Background
	Cryptographic Preliminaries
	Diffie-Hellman Contributory Key Exchange
	Pseudo-Random Function
	Authenticated Encryption with Associated Data
	Collision-Resistant Hash Functions
	Ring Signatures

	Blockchains
	Bitcoin-like Blockchains
	Monero

	Design and applications of a blockchain analysis platform
	Design and architecture
	Recording and importing data
	BlockSci Data
	Address Linking
	Programmer interface

	Applications
	Cluster intersection attack on Dash
	Improved estimates of the velocity of cryptocurrencies
	Other applications of BlockSci

	Conclusion

	Reducing Bandwidth in Mixing Cryptocurrencies
	Intuition
	Outline of this work

	Preliminaries
	Notation
	Transaction sets
	Transaction ledger
	Keyed hash functions with integer domain and range

	Definitions
	A Uniform Sampling Technique
	Security

	Duplicates and Alternative Distributions
	Duplicates
	Expected number of unique transactions
	Resampling
	Oversampling

	Alternative Distributions

	Integration with Specific Cryptocurrency Protocols
	Overview of Protocols
	Simulation Results

	Other Applications
	Related Work
	Anonymity for cryptocurrencies
	Improved WI and ZK proof techniques
	Programmable hash functions

	Conclusion

	Detecting Man-in-the-Middle via Network Latency and Reverse Turing Tests
	Technical Overview
	Definitions
	The Turing Test
	Formal Definition

	HASC Protocols
	Overview
	Execution Environment
	Pre-accept Phase
	Auth phase
	Post-accept phase

	Security Defintion
	Relation to ACCE security definition

	LATENT Protocol
	Network Model
	Design
	Overview
	Building Blocks
	Construction
	Illustrated Protocol Flow
	Potential Extensions

	Proving LATENT is a Secure HASC protocol
	Full Proof of Security

	Experimental Results
	Implementation
	Experimental Setup
	Results and Analysis
	TURN server analysis

	Related Work
	Other Forced Latency Variants
	Distance Bounding
	Captchas and Human-Based Cryptography

	Conclusion

	Bibliography

